spark学习-sparksql--07-sparkcontext类和sparkconf类

时间: 2023-04-27 09:05:44 浏览: 45
SparkContext类和SparkConf类是Spark框架中非常重要的两个类。 SparkContext类是Spark应用程序的入口点,它负责与集群管理器进行通信,创建RDD、累加器和广播变量等Spark核心组件,并提供了一些常用的操作函数,如textFile()、parallelize()等。 SparkConf类则是Spark应用程序的配置类,它可以设置Spark应用程序的各种参数,如应用程序名称、运行模式、集群管理器、序列化方式、内存分配等。SparkConf类还可以通过set()方法动态地修改配置参数。 SparkSQL是Spark框架中的一个模块,它提供了一种基于SQL语言的数据处理方式,可以将结构化数据以表格的形式进行处理和分析。SparkSQL支持多种数据源,如Hive、JSON、Parquet等,同时也支持多种数据格式的查询和分析,如SQL查询、DataFrame和Dataset等。 总之,SparkContext类和SparkConf类是Spark框架中非常重要的两个类,而SparkSQL则是Spark框架中的一个重要模块,它们都为Spark应用程序的开发和运行提供了很大的便利性。
相关问题

spark学习-sparksql--04-sparksql cli 单节点运行与yarn集群运行

Spark学习-SparkSQL-04-SparkSQL CLI单节点运行与YARN集群运行 SparkSQL CLI是SparkSQL的命令行接口,可以在单节点模式下运行,也可以在YARN集群模式下运行。 在单节点模式下,可以通过以下命令启动SparkSQL CLI: ``` ./bin/spark-sql ``` 在YARN集群模式下,可以通过以下命令启动SparkSQL CLI: ``` ./bin/spark-sql --master yarn --deploy-mode client ``` 其中,--master参数指定YARN的主节点地址,--deploy-mode参数指定部署模式为客户端模式。 在SparkSQL CLI中,可以执行SQL语句,也可以执行SparkSQL的API操作。在YARN集群模式下,SparkSQL CLI会将作业提交到YARN集群中运行。 总之,SparkSQL CLI是一个非常方便的工具,可以帮助我们快速地进行数据分析和处理。

spark3.0版本--sparksql

Spark 3.0版本中的Spark SQL是一个用于处理结构化数据的模块,它提供了一种基于SQL的接口,可以方便地进行数据查询、过滤、聚合、连接等操作。Spark SQL还支持将结构化数据与非结构化数据(如JSON、Parquet、Avro等)进行无缝集成,同时还提供了一些高级功能,如分区、分桶、窗口函数等。Spark 3.0版本中的Spark SQL还引入了一些新特性,如动态分区、动态分桶、动态过滤等,可以进一步提高数据处理的效率和灵活性。

相关推荐

### 回答1: Spark SQL是Spark生态系统中的一个组件,它提供了一种用于结构化数据处理的高级数据处理接口。Spark SQL支持使用SQL语言进行数据查询和处理,并且可以与Spark的其他组件(如Spark Streaming、MLlib等)无缝集成。Spark SQL还支持使用DataFrame API进行数据处理,这使得开发人员可以使用Scala、Java、Python和R等编程语言进行数据处理。Spark SQL还支持将数据存储在各种数据源中,如Hive、JSON、Parquet等。Spark SQL的主要优点是可以处理大规模的结构化数据,并且具有高性能和可扩展性。 ### 回答2: SparkSQL是Apache Spark中的一种组件,它用于处理结构化和半结构化数据。与传统的Spark核心功能相比,SparkSQL提供了更高级的数据处理工具,使得用户可以使用SQL查询和操作结构化数据。 SparkSQL的基本概念包括DataFrame和Dataset。DataFrame是强类型的分布式数据集,它可以看作是一个表,每一列都有一个名字和数据类型。Dataset是比DataFrame更加丰富的API,它可以以编程的方式进行查询和操作数据。 SparkSQL支持使用标准的SQL查询语言进行数据查询和聚合。用户可以编写SQL语句来过滤、聚合和排序数据,并通过SparkSQL将结果存储在DataFrame或Dataset中。 SparkSQL还支持多种数据格式的读取和写入,包括Parquet、Avro、JSON和CSV等。用户可以通过提供Schema来从这些格式中读取数据,并可以选择将数据以这些格式写入磁盘。 另外,SparkSQL还提供了与Hive的集成,使得用户可以使用Hive的元数据和UDF函数。用户可以通过SparkSQL查询Hive表,并将查询结果存储在Hive表中。 SparkSQL还支持缓存数据以提高查询性能。用户可以使用DataFrame或Dataset的persist()方法将数据持久化到内存或磁盘中,并可以通过调用unpersist()方法来释放缓存的数据。 总结来说,SparkSQL是Apache Spark中用于处理结构化和半结构化数据的组件,它提供了DataFrame和Dataset的概念,支持使用SQL语言进行数据查询和聚合,以及多种数据格式的读写,还具备与Hive的集成以及数据缓存等功能。 ### 回答3: Spark SQL是Apache Spark的一个模块,它提供了用于处理结构化数据的SQL查询和集成,使得在Spark中可以方便地进行数据处理和分析。 Spark SQL的核心是DataFrames,它是一种可处理具有命名列的分布式数据集的数据结构。DataFrames可以由多种数据源创建,包括结构化数据、Parquet文件、JSON文件、Hive表等。与传统的RDD相比,DataFrames具有更高的性能和更强的优化能力,因为它们提供了类似于传统数据库的结构化查询API。 通过Spark SQL,我们可以使用标准的SQL查询语言来查询和操作DataFrames中的数据。Spark SQL支持常见的SQL操作,如SELECT、JOIN、GROUP BY等,还支持用户自定义函数和聚合函数的定义。这使得开发人员可以使用熟悉的SQL语法来处理和分析数据,无需编写复杂的MapReduce或Spark程序。 除了SQL查询,Spark SQL还提供了用于将DataFrames转换为RDD的接口,以及将RDD转换为DataFrames的接口。这使得在需要深度定制数据处理逻辑时可以灵活地切换和使用两者之间的API。 总之,Spark SQL是一个强大而灵活的数据处理工具,它通过提供SQL查询和集成的方式,使得在Spark中可以方便地处理和分析结构化数据。它不仅提供了与传统数据库类似的性能和优化能力,还提供了与Spark的其他组件(如MLlib和GraphX)的无缝集成,使得在Spark平台上进行大规模数据处理变得更加简单和高效。
### 回答1: SparkSQL是Spark生态系统中的一个组件,它提供了一种基于结构化数据的编程接口,可以让用户使用SQL语言来查询和处理数据。SparkSQL支持多种数据源,包括Hive、JSON、Parquet等,同时也支持将查询结果输出到不同的存储系统中。SparkSQL还提供了DataFrame和Dataset两个API,可以让用户以类似于关系型数据库的方式来处理数据。通过SparkSQL,用户可以更方便地进行数据分析和处理,提高数据处理效率和准确性。 ### 回答2: SparkSQL是Spark生态系统中的一部分,能够提供高效的数据处理和快速的查询操作。它支持执行结构化数据处理的SQL语法和DataFrame API,并可与Python、Java、Scala进行交互。 在学习SparkSQL之前,需要掌握Spark基础的RDD编程,理解Spark RDD的概念和操作。接下来,了解SparkSQL的核心组件,即Catalyst Optimizer和Tungsten Execution Engine。 Catalyst Optimizer是SparkSQL的查询优化器,它能够对查询语句进行优化,提高查询速度。它可以通过逻辑优化、物理执行优化和代码生成优化来提高查询效率。 Tungsten Execution Engine是SparkSQL的执行引擎,它通过使用自定义的内存管理和计算支持来提高性能。Tungsten的内存管理器可以在JVM之外使用本地内存,这在处理大型数据集时非常有用。 了解了这些基础概念后,就可以开始学习SparkSQL的语法和操作了。SparkSQL支持的语法类似于传统的SQL语法,但也增加了类似于函数式编程的特性。 在SparkSQL中,数据可以表示为DataFrame或DataSet对象。DataFrame是一个分布式的数据表,类似于传统数据库中的表。DataSet是一个强类型的数据集,可以使用Java或Scala编写类型安全的数据处理逻辑。 SparkSQL还支持连接多个数据源,包括Hive、MySQL、PostgreSQL等。可以使用Spark SQL中的数据源API或JDBC API创建一个JDBC连接并访问数据。 除了基本的查询操作,SparkSQL还提供了许多高级操作,如窗口函数、聚合函数、分组集函数等,这些操作可以帮助用户更高效地处理数据。 最后,还要注意SparkSQL的优化和调试。可以通过查看Spark Web UI、使用count()、explain()函数等方法来进行调试和优化。 总之,SparkSQL是Spark生态系统中的一个重要组成部分,它提供了高效的数据处理和快速的查询操作,是处理和分析大型数据集时的重要工具。 ### 回答3: Spark SQL是Spark生态系统中的一个SQL执行引擎,使用它可以方便的在Spark程序中操作结构化的数据。本文将介绍Spark SQL的使用方法,包括如何使用Spark SQL查询结构化数据、如何使用DataFrame和DataSet API来处理数据,以及如何将DataFrame和DataSet与RDD进行交互。 使用Spark SQL查询结构化数据 Spark SQL通过在Spark程序中使用SQL语句来查询结构化数据。在查询之前,需要加载数据文件并将其转换为DataFrame或DataSet。加载数据文件的方法包括加载文本文件、JSON文件、CSV文件等。加载数据文件后,可以使用SQL语句通过DataFrame或DataSet进行数据查询,并将查询结果打印输出或写入文件。以下是实现这些操作的代码示例: //加载文本文件 val lines = spark.read.textFile("file.txt") //加载JSON文件 val json = spark.read.json("file.json") //加载CSV文件 val csv = spark.read.format("csv").option("header", "true").load("file.csv") //使用SQL语句查询数据 json.createOrReplaceTempView("people") val sqlDF = spark.sql("SELECT * FROM people") //将查询结果打印输出 sqlDF.show() //将查询结果写入文件 sqlDF.write.format("csv").save("result.csv") 使用DataFrame和DataSet API处理数据 Spark SQL提供了DataFrame和DataSet API来处理数据。DataFrame是一种带有命名列的分布式数据集合,DataSet是DataFrame的类型安全版本。使用这些API可以操作DataFrame和DataSet中的列和行数据,并进行转换、聚合和合并等操作。以下是使用DataFrame API操作结构化数据的示例代码: //创建DataFrame val df = spark.read.json("file.json") //显示DataFrame的Schema df.printSchema() //选择特定列进行查询 df.select("name", "age").show() //按name和age进行聚合统计 df.groupBy("name", "age").count().show() //将DataFrame转换为DataSet case class Person(name: String, age: Long) val ds = df.as[Person] //使用DataSet API查询 ds.filter(p => p.age > 18).show() 将DataFrame和DataSet与RDD进行交互 Spark SQL支持DataFrame、DataSet和RDD之间的相互转换。通过这种方式,可以在RDD和DataFrame或DataSet之间进行无缝转换,并执行相应的操作。以下是一些将DataFrame和DataSet与RDD进行交互的示例代码: //将RDD转换为DataFrame val rdd = sc.parallelize(Seq((1, "John"), (2, "Mike"), (3, "Lucy"))) val df = rdd.toDF("id", "name") //将DataFrame转换为RDD val rdd = df.rdd //将DataSet转换为RDD val ds = Seq(Person("John", 23), Person("Mike", 32), Person("Lucy", 18)).toDS() val rdd = ds.rdd 总之,Spark SQL是Spark生态系统中的一个非常有用的工具,通过使用它可以方便地进行数据查询和处理。在使用Spark SQL时,需要理解如何加载和查询数据文件、如何使用DataFrame和DataSet API来处理数据,以及如何将DataFrame和DataSet与RDD进行交互。当然,在实际使用中,还需要根据具体情况进行进一步学习和实践。
### 回答1: Spark是一个开源的大数据处理框架,可以处理大规模的数据集。而Spark SQL是Spark中的一个模块,用于处理结构化数据,支持SQL查询和DataFrame API。Spark SQL可以将结构化数据存储在分布式的列式存储系统中,并提供了高效的查询引擎,可以在大规模数据集上进行快速的查询和分析。Spark SQL还支持多种数据源,包括Hive、JSON、Parquet等。 ### 回答2: Spark是一个开源的大数据处理工具,它主要的特点是速度快、易于扩展和支持多种语言。Spark可以用于批处理、实时处理、机器学习、图处理、流处理等多个领域,并且可以在大多数基础设施上运行,如Hadoop、Mesos、Kubernetes等,为企业提供了更加便利灵活的大数据处理方案。 Spark SQL是Spark中的一个模块,它提供了一个基于SQL的接口以及齐全的支持,让用户可以方便地在Spark上进行结构化数据处理,如数据查询、聚合、过滤等。Spark SQL的优势在于其性能优异,它可以在不同的数据源上运行,包括Hive、Avro、Parquet等。 Spark SQL模块的核心组件为Catalyst,它是一个基于规则的优化器,可以自动优化查询计划,提高整体查询速度。Spark SQL支持多种查询API,包括SQL、DataFrame API和DataSet API,用户可以根据自己的需求选择不同的API来处理数据。 另外,Spark SQL支持数据格式的灵活转换,可以将不同数据源中的数据转换为DataFrame或DataSet格式,并且提供了丰富的数据源集成插件,如JDBC、MongoDB、Cassandra等。 总之,Spark以其快速、灵活、易于扩展的特性帮助企业更好地管理和处理大规模结构化数据,而Spark SQL则是Spark的重要组成部分,它提供SQL接口和优化器,让用户可以更加方便地处理和分析结构化数据。 ### 回答3: Spark是一个开源分布式数据处理框架,可以快速处理大规模数据集,支持多种数据源和数据处理方式,具有高效的计算能力和可扩展性。Spark SQL是Spark中的一个子项目,提供了一种基于SQL的接口,可以将结构化数据集集成到Spark中,支持SQL查询、数据聚合、连接和过滤等操作。Spark SQL支持多种数据源,包括Hive表、JSON、Parquet和CSV格式等,同时也支持DataFrame和Dataset等高级数据结构。Spark SQL还提供了Java、Scala和Python等多种编程语言接口,以便各种开发人员利用Spark SQL进行数据处理和分析。 Spark SQL的一个重要特性是DataFrame,它是一个分布式的数据集合,类似于关系型数据库中的表格,但是可以横向扩展到大规模数据集。DataFrame提供了Schema(数据结构)的定义和数据类型的推导,可以简化代码编写和数据处理过程。在Spark SQL中,DataFrame可以通过API进行操作,也可以通过SQL查询进行操作。Spark SQL还支持多种数据格式之间的转换,例如从JSON格式转换为Parquet格式,从CSV格式转换为Hive表格等。 Spark SQL的一个优势是可以与其他Spark组件集成,例如Spark Streaming、MLlib和GraphX等,使得数据处理和分析更加高效和简洁。Spark Streaming可以将实时数据处理与批处理数据处理相结合,使得数据处理和分析更加完整和有力。MLlib提供了机器学习算法的实现,可以快速进行数据挖掘和模型训练。GraphX提供了图形计算的能力,可以进行大规模的网络分析和数据可视化。 总之,Spark SQL是一个强大的数据处理框架,可以快速处理各种结构化数据集,并且可以与其他组件集成,实现高效的数据分析和挖掘。随着大数据时代的到来,Spark SQL将成为数据科学和工程师的必备工具之一。
### 回答1: Spark submit任务提交是指将用户编写的Spark应用程序提交到集群中运行的过程。在Spark中,用户可以通过命令行工具或API方式提交任务。 Spark submit命令的基本语法如下: ./bin/spark-submit \ --class <main-class> \ --master <master-url> \ --deploy-mode <deploy-mode> \ --conf <key>=<value> \ <application-jar> \ [application-arguments] 其中,--class指定应用程序的主类,--master指定集群的URL,--deploy-mode指定应用程序的部署模式,--conf指定应用程序的配置参数,<application-jar>指定应用程序的jar包路径,[application-arguments]指定应用程序的命令行参数。 在Spark中,任务提交的过程主要包括以下几个步骤: 1. 创建SparkConf对象,设置应用程序的配置参数; 2. 创建SparkContext对象,连接到集群; 3. 加载应用程序的主类; 4. 运行应用程序的main方法; 5. 关闭SparkContext对象,释放资源。 在任务提交的过程中,Spark会自动将应用程序的jar包和依赖的库文件上传到集群中,并在集群中启动Executor进程来执行任务。任务执行完成后,Spark会将结果返回给Driver进程,并将Executor进程关闭。 总之,Spark submit任务提交是Spark应用程序运行的关键步骤,掌握任务提交的原理和方法对于开发和调试Spark应用程序非常重要。 ### 回答2: Spark 作为一款强大的分布式计算框架,提供了很多提交任务的方式,其中最常用的方法就是通过 spark-submit 命令来提交任务。spark-submit 是 Spark 提供的一个命令行工具,用于在集群上提交 Spark 应用程序,并在集群上运行。 spark-submit 命令的语法如下: ./bin/spark-submit [options] <app jar | python file> [app arguments] 其中,[options] 为可选的参数,包括了执行模式、执行资源等等,<app jar | python file> 为提交的应用程序的文件路径,[app arguments] 为应用程序运行时的参数。 spark-submit 命令会将应用程序的 jar 文件以及所有的依赖打包成一个 zip 文件,然后将 zip 文件提交到集群上运行。在运行时,Spark 会根据指定的主类(或者 Python 脚本文件)启动应用程序。 在提交任务时,可以通过设置一些参数来控制提交任务的方式。例如: --master:指定该任务运行的模式,默认为 local 模式,可设置为 Spark Standalone、YARN、Mesos、Kubernetes 等模式。 --deploy-mode:指定该任务的部署模式,默认为 client,表示该应用程序会在提交任务的机器上运行,可设置为 cluster,表示该应用程序会在集群中一台节点上运行。 --num-executors:指定该任务需要的 executor 数量,每个 executor 会占用一个计算节点,因此需要根据集群配置与任务要求确定该参数的值。 --executor-memory:指定每个 executor 可用的内存量,默认为 1g,可以适当调整该值以达到更好的任务运行效果。 此外,还有一些参数可以用来指定应用程序运行时需要传递的参数: --conf:指定应用程序运行时需要的一些配置参数,比如 input 文件路径等。 --class:指定要运行的类名或 Python 脚本文件名。 --jars:指定需要使用的 Jar 包文件路径。 --py-files:指定要打包的 python 脚本,通常用于将依赖的 python 包打包成 zip 文件上传。 总之,spark-submit 是 Spark 提交任务最常用的方法之一,通过该命令能够方便地将应用程序提交到集群上运行。在提交任务时,需要根据实际场景调整一些参数,以达到更好的任务运行效果。 ### 回答3: Spark是一个高效的分布式计算框架,其中比较重要的组成部分就是任务提交。在Spark中,任务提交主要通过spark-submit来实现。本文将从两方面,即任务提交之前的准备工作和任务提交过程中的细节进行探讨。 一、任务提交之前的准备工作 1.环境配置 在执行任务提交前,需要确保所在的计算机环境已经配置好了Spark。Spark的环境配置主要包括JAVA环境、Spark的二进制包、PATH路径配置、SPARK_HOME环境变量配置等。 2.编写代码 Spark的任务提交是基于代码的,因此在任务提交前,需要编写好自己的代码,并上传到集群中的某个路径下,以便后续提交任务时调用。 3.参数设置 在任务提交时,需要对一些关键的参数进行设置。例如,任务名、任务对应的代码路径、任务需要的资源、任务需要的worker节点等。 二、任务提交过程中的细节 1.启动Driver 当使用spark-submit命令提交任务时,Spark会启动一个Driver来运行用户的代码。这个Driver通常需要连接到Spark集群来执行任务。 2.上传文件 Spark支持在任务提交时上传所需的文件。这些文件可以用于设置Spark的环境变量、为任务提供数据源等。 3.资源需求 Spark的任务执行依赖于一定的资源。每个任务可以指定自己的资源需求,例如需要多少内存、需要多少CPU等。这些资源需求通常与提交任务时需要的worker节点数量有关系。 4.监控和日志 在任务执行的过程中,Spark会收集任务的监控数据和日志信息。这些数据可用于后续的调试和性能优化。 总之,在Spark任务提交过程中,需要充分考虑任务的资源需求和监控日志信息的收集,以便更好地完成任务和优化Spark运行效率。

最新推荐

实验 Spark ML Bisecting k-means聚类算法使用

实验 Spark ML Bisecting k-means聚类算法使用,实验文档

Spark-shell批量命令执行脚本的方法

今天小编就为大家分享一篇Spark-shell批量命令执行脚本的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

spark-mllib

翻译spark mllib的相关官网资料,便于阅读,有些不准确的地方,为阅读提供方便。

Spark-Sql源码解析

详细描述了Spark-sql的原理,从sql语句如何转换为逻辑计划,然后是物理计划,最后是rdd

windows10下spark2.3.0本地开发环境搭建-亲测

Spark-2.3.0 Scala-2.11.8 Maven-3.5.3 ideaIC-2018.1.4.exe spark-2.3.0-bin-hadoop2.7 对应博文:https://blog.csdn.net/hambition/article/details/80769771 由于博文上传图片比较麻烦,图片又非常之多,没分的...

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

特邀编辑特刊:安全可信计算

10特刊客座编辑安全和可信任计算0OZGUR SINANOGLU,阿布扎比纽约大学,阿联酋 RAMESHKARRI,纽约大学,纽约0人们越来越关注支撑现代社会所有信息系统的硬件的可信任性和可靠性。对于包括金融、医疗、交通和能源在内的所有关键基础设施,可信任和可靠的半导体供应链、硬件组件和平台至关重要。传统上,保护所有关键基础设施的信息系统,特别是确保信息的真实性、完整性和机密性,是使用在被认为是可信任和可靠的硬件平台上运行的软件实现的安全协议。0然而,这一假设不再成立;越来越多的攻击是0有关硬件可信任根的报告正在https://isis.poly.edu/esc/2014/index.html上进行。自2008年以来,纽约大学一直组织年度嵌入式安全挑战赛(ESC)以展示基于硬件的攻击对信息系统的容易性和可行性。作为这一年度活动的一部分,ESC2014要求硬件安全和新兴技术�

如何查看mysql版本

### 回答1: 可以通过以下两种方式来查看MySQL版本: 1. 通过命令行方式: 打开终端,输入以下命令: ``` mysql -V ``` 回车后,会显示MySQL版本信息。 2. 通过MySQL客户端方式: 登录到MySQL客户端,输入以下命令: ``` SELECT VERSION(); ``` 回车后,会显示MySQL版本信息。 ### 回答2: 要查看MySQL的版本,可以通过以下几种方法: 1. 使用MySQL命令行客户端:打开命令行终端,输入mysql -V命令,回车后会显示MySQL的版本信息。 2. 使用MySQL Workbench:打开MyS

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

特邀编辑导言:片上学习的硬件与算法

300主编介绍:芯片上学习的硬件和算法0YU CAO,亚利桑那州立大学XINLI,卡内基梅隆大学TAEMINKIM,英特尔SUYOG GUPTA,谷歌0近年来,机器学习和神经计算算法取得了重大进展,在各种任务中实现了接近甚至优于人类水平的准确率,如基于图像的搜索、多类别分类和场景分析。然而,大多数方法在很大程度上依赖于大型数据集的可用性和耗时的离线训练以生成准确的模型,这在许多处理大规模和流式数据的应用中是主要限制因素,如工业互联网、自动驾驶车辆和个性化医疗分析。此外,这些智能算法的计算复杂性仍然对最先进的计算平台构成挑战,特别是当所需的应用受到功耗低、吞吐量高、延迟小等要求的严格限制时。由于高容量、高维度和高速度数据,最近传感器技术的进步进一步加剧了这种情况。0在严格的条件下支持芯片上学习和分类的挑战0性�