sklearn.datasets.make_circles
时间: 2023-04-27 13:05:45 浏览: 406
sklearn.datasets.make_circles是一个函数,用于生成一个圆形的数据集。该函数可以生成两个同心圆的数据集,其中内圆和外圆之间有一定的距离。生成的数据集可以用于分类问题或聚类问题的训练和测试。函数的参数包括数据集的样本数量、噪声的大小、内圆和外圆之间的距离等。
相关问题
翻译这段程序并自行赋值调用:import matplotlib.pyplot as plt import numpy as np import sklearn import sklearn.datasets import sklearn.linear_model def plot_decision_boundary(model, X, y): # Set min and max values and give it some padding x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1 y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole grid Z = model(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.ylabel('x2') plt.xlabel('x1') plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral) def sigmoid(x): s = 1/(1+np.exp(-x)) return s def load_planar_dataset(): np.random.seed(1) m = 400 # number of examples N = int(m/2) # number of points per class print(np.random.randn(N)) D = 2 # dimensionality X = np.zeros((m,D)) # data matrix where each row is a single example Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue) a = 4 # maximum ray of the flower for j in range(2): ix = range(Nj,N(j+1)) t = np.linspace(j3.12,(j+1)3.12,N) + np.random.randn(N)0.2 # theta r = anp.sin(4t) + np.random.randn(N)0.2 # radius X[ix] = np.c_[rnp.sin(t), rnp.cos(t)] Y[ix] = j X = X.T Y = Y.T return X, Y def load_extra_datasets(): N = 200 noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3) noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2) blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6) gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None) no_structure = np.random.rand(N, 2), np.random.rand(N, 2) return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
这段程序是一个分类模型的辅助函数,包括了绘制决策边界、sigmoid函数和加载数据集的函数。具体实现如下:
```python
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import sklearn.datasets
import sklearn.linear_model
def plot_decision_boundary(model, X, y):
# 设置最小值和最大值,并给它们一些填充
x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
h = 0.01
# 生成一个网格,网格中点的距离为h
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# 对整个网格预测函数值
Z = model(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# 绘制轮廓和训练样本
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.ylabel('x2')
plt.xlabel('x1')
plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)
def sigmoid(x):
s = 1 / (1 + np.exp(-x))
return s
def load_planar_dataset():
np.random.seed(1)
m = 400 # 样本数量
N = int(m / 2) # 每个类的样本数量
# 生成数据集
D = 2 # 特征维度
X = np.zeros((m, D)) # 特征矩阵
Y = np.zeros((m, 1), dtype='uint8') # 标签向量
a = 4 # 花的最大半径
for j in range(2):
ix = range(N*j, N*(j+1))
t = np.linspace(j*3.12, (j+1)*3.12, N) + np.random.randn(N)*0.2 # theta
r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
Y[ix] = j
X = X.T
Y = Y.T
return X, Y
def load_extra_datasets():
N = 200
noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)
noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)
blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)
gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)
no_structure = np.random.rand(N, 2), np.random.rand(N, 2)
return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
```
这段程序中包含了以下函数:
- `plot_decision_boundary(model, X, y)`:绘制分类模型的决策边界,其中`model`是分类模型,`X`是特征矩阵,`y`是标签向量。
- `sigmoid(x)`:实现sigmoid函数。
- `load_planar_dataset()`:加载一个二维的花瓣数据集。
- `load_extra_datasets()`:加载五个其他数据集。
from sklearn.datasets import make_circles from sklearn.datasets import make_moons import matplotlib.
好的,`make_circles` 和 `make_moons` 都是 scikit-learn (sklearn) 库中的函数,用于生成二维数据集,常用于可视化和机器学习模型的演示。这两个函数主要用于创建两个简单形状的数据集:
- `make_circles()` 函数生成一组围绕着中心点的圆形数据。数据可以设置为同心圆(默认),也可以通过调整参数如 `noise` 来增加噪声,使得数据点不是完美的圆形分布。
- `make_moons()` 则生成一对月牙形的数据集,通常用于模拟分类任务中的非线性模式。数据由两个相互交错的半圆形组成,每个半圆又分为两部分,可以用于展示二元分类的情况。
`matplotlib` 是一个广泛使用的 Python 数据可视化库,可以用来绘制各种图表,包括散点图、线图等,非常适合用来展示这些生成的数据集的结果。
你可以使用以下代码示例来加载并可视化 `make_circles` 或 `make_moons` 的数据:
```python
from sklearn.datasets import make_circles, make_moons
import matplotlib.pyplot as plt
# 生成数据
X_circles, y_circles = make_circles(n_samples=100, noise=0.1)
X_moons, y_moons = make_moons(n_samples=100)
# 可视化
fig, axs = plt.subplots(1, 2, figsize=(10, 5))
axs[0].scatter(X_circles[:, 0], X_circles[:, 1], c=y_circles, cmap='viridis')
axs[0].set_title('Make Circles')
axs[1].scatter(X_moons[:, 0], X_moons[:, 1], c=y_moons, cmap='viridis')
axs[1].set_title('Make Moons')
plt.show()
```
这会显示生成的圆形和月牙形数据的散点图。
阅读全文