帮我写一个transformer做7特征与1标签拟合的网络,放在gpu训练
时间: 2024-02-26 21:56:36 浏览: 109
好的,我可以帮你设计一个基于Transformer的神经网络,用于将7个输入特征映射到1个输出标签。以下是一个简单的实现示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
class TransformerModel(nn.Module):
def __init__(self, num_features, num_labels, hidden_size, num_layers, num_heads, dropout):
super(TransformerModel, self).__init__()
self.num_features = num_features
self.num_labels = num_labels
self.hidden_size = hidden_size
self.num_layers = num_layers
self.num_heads = num_heads
self.dropout = dropout
# Embedding layers
self.embedding = nn.Linear(num_features, hidden_size)
self.positional_encoding = nn.Parameter(torch.zeros(1, num_features, hidden_size))
# Transformer layers
self.transformer = nn.TransformerEncoder(
nn.TransformerEncoderLayer(hidden_size, num_heads, hidden_size, dropout),
num_layers
)
# Output layer
self.out = nn.Linear(hidden_size, num_labels)
def forward(self, x):
# Embedding
x = self.embedding(x) + self.positional_encoding
# Transformer
x = self.transformer(x)
# Output
x = self.out(x.mean(dim=0))
return x
# Define hyperparameters
num_features = 7
num_labels = 1
hidden_size = 128
num_layers = 4
num_heads = 8
dropout = 0.1
# Instantiate the model
model = TransformerModel(num_features, num_labels, hidden_size, num_layers, num_heads, dropout)
# Prepare the data
train_data = torch.randn(1000, num_features)
train_labels = torch.randn(1000, num_labels)
# Define the loss function and optimizer
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters())
# Train the model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
train_data, train_labels = train_data.to(device), train_labels.to(device)
model.train()
for epoch in range(100):
optimizer.zero_grad()
outputs = model(train_data)
loss = criterion(outputs, train_labels)
loss.backward()
optimizer.step()
print('Epoch {}: loss={}'.format(epoch+1, loss.item()))
```
在这个例子中,我们使用了 PyTorch 中的 `nn.TransformerEncoder` 类来定义Transformer层,并将其堆叠在一起以形成完整的Transformer模型。我们使用 `nn.Linear` 和 `nn.Parameter`来定义输入嵌入层和位置编码。
为了训练模型,我们使用了均方误差损失函数,并使用Adam优化器进行优化。我们还使用了GPU来加速训练过程。
注意,在实际应用中,您可能需要根据您的数据和任务的特定要求对模型进行微调。
阅读全文