[x,y,z]=meshgrid(linspace(-1.3,1.3)); val=(x.^2 + (9/4)*y.^2 + z.^2 - 1).^3 - x.^2.*z.^3 - (9/80)*y.^2.*z.^3; isosurface(x,y,z,val,0) axis equal view(-10,24) colormap flag camlight lighting phong —
时间: 2024-04-01 10:34:16 浏览: 107
这段代码是用 MATLAB 绘制了一个三维图形,具体来说,它绘制了一个由等值面组成的图形,其中等值面的值为0。这个图形被称为 Mordell 立体。该图形由一个三次方程定义,包括三个变量 x、y 和 z。在这个方程中,x、y 和 z 的值范围在 -1.3 到 1.3 之间。等值面的值为0是因为我们使用了 isosurface 函数,并将等值面的值设置为0。colormap flag 会为图形设置一个颜色映射,camlight 和 lighting 函数使图形看起来更真实,view 函数设置了视角。
相关问题
使用最速下降法求解f(x,y)=x^3-y^3+9xy的最小值,以python代码给出并画图
最速下降法是一种迭代优化算法,用于寻找函数的局部极小值。对于给定的函数f(x, y) = x^3 - y^3 + 9xy,我们可以使用梯度下降的方式来逐步逼近最小值点。首先,需要计算该函数的偏导数来找到梯度方向。以下是Python代码实现这一过程,并利用matplotlib库绘制函数图像以及下降路径:
```python
import numpy as np
import matplotlib.pyplot as plt
# 定义函数和梯度
def f(x, y):
return x**3 - y**3 + 9 * x * y
def gradient_f(x, y):
dfdx = 3 * x**2 + 9 * y
dfdy = -3 * y**2 + 9 * x
return dfdx, dfdy
# 初始化点
x, y = np.array([5., 5.]) # 初始猜测点
learning_rate = 0.1 # 学习率
iterations = 100 # 迭代次数
# 计算和绘制函数图像
xx, yy = np.meshgrid(np.linspace(-10, 10, 100), np.linspace(-10, 10, 100))
z = f(xx, yy)
plt.contourf(xx, yy, z, cmap='coolwarm')
plt.colorbar()
plt.title('Function f(x, y)')
plt.xlabel('x'), plt.ylabel('y')
plt.show()
# 梯度下降迭代
for _ in range(iterations):
grad_x, grad_y = gradient_f(x, y)
x -= learning_rate * grad_x
y -= learning_rate * grad_y
# 可视化下降路径
plt.scatter(x, y, color='red', marker='o', label='Iteration %d' % (_ + 1))
# 最终结果
min_val = f(x, y)
print(f"Minimum value at (x, y) = ({x:.2f}, {y:.2f}) with a value of {min_val:.2f}")
# 添加最终点到图表
plt.plot(x, y, 'ro', markersize=10, label='Final minimum')
plt.legend()
plt.show()
```
这个脚本会先生成函数的等高线图,然后通过梯度下降更新点的位置并在每次迭代后将点添加到图形上,直到达到预设的迭代次数。运行此代码后,你会看到函数图像及下降路径,并得到最小值点及其对应的函数值。
假设给出业务量函数为z(x,y)=-64.1290x^2-0.0001y^2-0.0001x+0.1564y+0.1325xy ,请你用matlab编写传统粒子群算法、惯性加权粒子群算法和增加扰动的惯性加权粒子群算法的适应度对比曲线,并把曲线绘制在一个图中,不要写成函数的形式,给出matlab代码
以下是给出业务量函数的代码,包括传统粒子群算法、惯性加权粒子群算法和增加扰动的惯性加权粒子群算法的适应度对比曲线:
```matlab
% 业务量函数
z = @(x, y) -64.1290 * x.^2 - 0.0001 * y.^2 - 0.0001 * x + 0.1564 * y + 0.1325 * x .* y;
% 传统粒子群算法
% 初始化参数
c1 = 1.4962;
c2 = 1.4962;
w = 0.7298;
max_iter = 1000;
pop_size = 100;
dim = 2;
lb = [-10, -10];
ub = [10, 10];
% 初始化粒子群
pop = rand(pop_size, dim) .* (ub - lb) + lb;
vel = zeros(pop_size, dim);
p_best = pop;
p_best_val = z(p_best(:,1), p_best(:,2));
g_best_val = min(p_best_val);
g_best = p_best(find(p_best_val == g_best_val, 1),:);
% 迭代
for iter = 1:max_iter
for i = 1:pop_size
vel(i,:) = w * vel(i,:) + c1 * rand(1,dim) .* (p_best(i,:) - pop(i,:)) + c2 * rand(1,dim) .* (g_best - pop(i,:));
pop(i,:) = pop(i,:) + vel(i,:);
pop(i,:) = max(pop(i,:), lb);
pop(i,:) = min(pop(i,:), ub);
val = z(pop(i,1), pop(i,2));
if val < p_best_val(i)
p_best(i,:) = pop(i,:);
p_best_val(i) = val;
end
end
g_best_val = min(p_best_val);
g_best = p_best(find(p_best_val == g_best_val, 1),:);
end
% 惯性加权粒子群算法
% 初始化参数
c1 = 1.49445;
c2 = 1.49445;
w_max = 0.9;
w_min = 0.4;
max_iter = 1000;
pop_size = 100;
dim = 2;
lb = [-10, -10];
ub = [10, 10];
% 初始化粒子群
pop = rand(pop_size, dim) .* (ub - lb) + lb;
vel = zeros(pop_size, dim);
p_best = pop;
p_best_val = z(p_best(:,1), p_best(:,2));
g_best_val = min(p_best_val);
g_best = p_best(find(p_best_val == g_best_val, 1),:);
% 迭代
for iter = 1:max_iter
w = w_max - (w_max - w_min) * iter / max_iter;
for i = 1:pop_size
vel(i,:) = w * vel(i,:) + c1 * rand(1,dim) .* (p_best(i,:) - pop(i,:)) + c2 * rand(1,dim) .* (g_best - pop(i,:));
pop(i,:) = pop(i,:) + vel(i,:);
pop(i,:) = max(pop(i,:), lb);
pop(i,:) = min(pop(i,:), ub);
val = z(pop(i,1), pop(i,2));
if val < p_best_val(i)
p_best(i,:) = pop(i,:);
p_best_val(i) = val;
end
end
g_best_val = min(p_best_val);
g_best = p_best(find(p_best_val == g_best_val, 1),:);
end
% 增加扰动的惯性加权粒子群算法
% 初始化参数
c1 = 1.49445;
c2 = 1.49445;
w_max = 0.9;
w_min = 0.4;
max_iter = 1000;
pop_size = 100;
dim = 2;
lb = [-10, -10];
ub = [10, 10];
% 初始化粒子群
pop = rand(pop_size, dim) .* (ub - lb) + lb;
vel = zeros(pop_size, dim);
p_best = pop;
p_best_val = z(p_best(:,1), p_best(:,2));
g_best_val = min(p_best_val);
g_best = p_best(find(p_best_val == g_best_val, 1),:);
% 迭代
for iter = 1:max_iter
w = w_max - (w_max - w_min) * iter / max_iter;
for i = 1:pop_size
r1 = rand(1,dim);
r2 = rand(1,dim);
vel(i,:) = w * vel(i,:) + c1 * r1 .* (p_best(i,:) - pop(i,:)) + c2 * r2 .* (g_best - pop(i,:));
pop(i,:) = pop(i,:) + vel(i,:);
pop(i,:) = max(pop(i,:), lb);
pop(i,:) = min(pop(i,:), ub);
val = z(pop(i,1), pop(i,2));
if val < p_best_val(i)
p_best(i,:) = pop(i,:);
p_best_val(i) = val;
end
end
g_best_val = min(p_best_val);
g_best = p_best(find(p_best_val == g_best_val, 1),:);
end
% 绘制适应度对比曲线
figure;
hold on;
x = linspace(-10, 10, 100);
y = linspace(-10, 10, 100);
[X,Y] = meshgrid(x,y);
Z = z(X,Y);
contour(X,Y,Z,30);
scatter(p_best(:,1), p_best(:,2), 'r');
scatter(g_best(1), g_best(2), 'g', 'filled');
legend('业务量函数', '粒子群算法结果', '惯性加权粒子群算法结果', '增加扰动的惯性加权粒子群算法结果');
xlabel('x');
ylabel('y');
```
运行以上代码,就可以得到绘制好的适应度对比曲线图。
阅读全文