给我一份在pytorch框架下vgg16_unet的代码,输出特征图维度为3
时间: 2024-02-05 10:13:09 浏览: 72
以下是基于PyTorch框架实现的VGG16_UNET代码:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class VGG16_UNET(nn.Module):
def __init__(self, num_classes=3):
super(VGG16_UNET, self).__init__()
self.num_classes = num_classes
# Encoder
self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2)
# Decoder
self.upconv6 = nn.ConvTranspose2d(512, 512, kernel_size=2, stride=2)
self.conv6_1 = nn.Conv2d(1024, 512, kernel_size=3, padding=1)
self.conv6_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.conv6_3 = nn.Conv2d(512, 256, kernel_size=3, padding=1)
self.upconv7 = nn.ConvTranspose2d(256, 256, kernel_size=2, stride=2)
self.conv7_1 = nn.Conv2d(512, 256, kernel_size=3, padding=1)
self.conv7_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.conv7_3 = nn.Conv2d(256, 128, kernel_size=3, padding=1)
self.upconv8 = nn.ConvTranspose2d(128, 128, kernel_size=2, stride=2)
self.conv8_1 = nn.Conv2d(256, 128, kernel_size=3, padding=1)
self.conv8_2 = nn.Conv2d(128, 64, kernel_size=3, padding=1)
self.upconv9 = nn.ConvTranspose2d(64, 64, kernel_size=2, stride=2)
self.conv9_1 = nn.Conv2d(128, 64, kernel_size=3, padding=1)
self.conv9_2 = nn.Conv2d(64, self.num_classes, kernel_size=3, padding=1)
def forward(self, x):
# Encoder
x = F.relu(self.conv1_1(x))
x = F.relu(self.conv1_2(x))
x = self.pool1(x)
x = F.relu(self.conv2_1(x))
x = F.relu(self.conv2_2(x))
x = self.pool2(x)
x = F.relu(self.conv3_1(x))
x = F.relu(self.conv3_2(x))
x = F.relu(self.conv3_3(x))
x = self.pool3(x)
x = F.relu(self.conv4_1(x))
x = F.relu(self.conv4_2(x))
x = F.relu(self.conv4_3(x))
x = self.pool4(x)
x = F.relu(self.conv5_1(x))
x = F.relu(self.conv5_2(x))
x = F.relu(self.conv5_3(x))
x = self.pool5(x)
# Decoder
x = self.upconv6(x)
x = torch.cat((x, F.relu(self.conv4_3(x))), dim=1)
x = F.relu(self.conv6_1(x))
x = F.relu(self.conv6_2(x))
x = F.relu(self.conv6_3(x))
x = self.upconv7(x)
x = torch.cat((x, F.relu(self.conv3_3(x))), dim=1)
x = F.relu(self.conv7_1(x))
x = F.relu(self.conv7_2(x))
x = F.relu(self.conv7_3(x))
x = self.upconv8(x)
x = torch.cat((x, F.relu(self.conv2_2(x))), dim=1)
x = F.relu(self.conv8_1(x))
x = F.relu(self.conv8_2(x))
x = self.upconv9(x)
x = torch.cat((x, F.relu(self.conv1_2(x))), dim=1)
x = F.relu(self.conv9_1(x))
x = self.conv9_2(x)
return x
```
这个代码使用了VGG16作为Encoder,使用transpose convolution实现Decoder,并输出特征图维度为3。如果你需要更改输出维度,只需要修改`num_classes`的值即可。
阅读全文