给我一份在pytorch框架下vgg16_unet的代码,其中编码部分加入三个跳接层来提取更多特征,解码部分加入编码到解码的跳跃连接,输出特征图维度为3
时间: 2024-02-05 16:14:09 浏览: 159
好的,以下是在PyTorch框架下实现vgg16_unet的代码,其中编码部分加入三个跳接层,解码部分加入编码到解码的跳跃连接,输出特征图维度为3:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class vgg16_unet(nn.Module):
def __init__(self, n_classes=3):
super(vgg16_unet, self).__init__()
# VGG16 Encoder
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.bn3 = nn.BatchNorm2d(128)
self.conv4 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
self.bn4 = nn.BatchNorm2d(128)
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv5 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.bn5 = nn.BatchNorm2d(256)
self.conv6 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.bn6 = nn.BatchNorm2d(256)
self.conv7 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.bn7 = nn.BatchNorm2d(256)
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv8 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.bn8 = nn.BatchNorm2d(512)
self.conv9 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.bn9 = nn.BatchNorm2d(512)
self.conv10 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.bn10 = nn.BatchNorm2d(512)
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv11 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.bn11 = nn.BatchNorm2d(512)
self.conv12 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.bn12 = nn.BatchNorm2d(512)
self.conv13 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.bn13 = nn.BatchNorm2d(512)
self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2)
# Decoder
self.upconv1 = nn.ConvTranspose2d(512, 512, kernel_size=2, stride=2)
self.conv14 = nn.Conv2d(512 + 512, 512, kernel_size=3, padding=1)
self.bn14 = nn.BatchNorm2d(512)
self.conv15 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.bn15 = nn.BatchNorm2d(512)
self.conv16 = nn.Conv2d(512, 256, kernel_size=3, padding=1)
self.bn16 = nn.BatchNorm2d(256)
self.upconv2 = nn.ConvTranspose2d(256, 256, kernel_size=2, stride=2)
self.conv17 = nn.Conv2d(256 + 256, 256, kernel_size=3, padding=1)
self.bn17 = nn.BatchNorm2d(256)
self.conv18 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
self.bn18 = nn.BatchNorm2d(256)
self.conv19 = nn.Conv2d(256, 128, kernel_size=3, padding=1)
self.bn19 = nn.BatchNorm2d(128)
self.upconv3 = nn.ConvTranspose2d(128, 128, kernel_size=2, stride=2)
self.conv20 = nn.Conv2d(128 + 128, 128, kernel_size=3, padding=1)
self.bn20 = nn.BatchNorm2d(128)
self.conv21 = nn.Conv2d(128, 64, kernel_size=3, padding=1)
self.bn21 = nn.BatchNorm2d(64)
self.upconv4 = nn.ConvTranspose2d(64, 64, kernel_size=2, stride=2)
self.conv22 = nn.Conv2d(64 + 64, 64, kernel_size=3, padding=1)
self.bn22 = nn.BatchNorm2d(64)
self.conv23 = nn.Conv2d(64, n_classes, kernel_size=1)
def forward(self, x):
# Encoder
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x1 = x.clone()
x = self.pool1(x)
x = F.relu(self.bn3(self.conv3(x)))
x = F.relu(self.bn4(self.conv4(x)))
x2 = x.clone()
x = self.pool2(x)
x = F.relu(self.bn5(self.conv5(x)))
x = F.relu(self.bn6(self.conv6(x)))
x = F.relu(self.bn7(self.conv7(x)))
x3 = x.clone()
x = self.pool3(x)
x = F.relu(self.bn8(self.conv8(x)))
x = F.relu(self.bn9(self.conv9(x)))
x = F.relu(self.bn10(self.conv10(x)))
x4 = x.clone()
x = self.pool4(x)
x = F.relu(self.bn11(self.conv11(x)))
x = F.relu(self.bn12(self.conv12(x)))
x = F.relu(self.bn13(self.conv13(x)))
x5 = x.clone()
x = self.pool5(x)
# Decoder
x = self.upconv1(x)
x = torch.cat([x5, x], dim=1)
x = F.relu(self.bn14(self.conv14(x)))
x = F.relu(self.bn15(self.conv15(x)))
x = F.relu(self.bn16(self.conv16(x)))
x = self.upconv2(x)
x = torch.cat([x4, x], dim=1)
x = F.relu(self.bn17(self.conv17(x)))
x = F.relu(self.bn18(self.conv18(x)))
x = F.relu(self.bn19(self.conv19(x)))
x = self.upconv3(x)
x = torch.cat([x3, x], dim=1)
x = F.relu(self.bn20(self.conv20(x)))
x = F.relu(self.bn21(self.conv21(x)))
x = self.upconv4(x)
x = torch.cat([x2, x], dim=1)
x = F.relu(self.bn22(self.conv22(x)))
x = self.conv23(x)
return x
```
这是一个简单的vgg16_unet模型实现,你可以根据自己的需要进行修改和优化。
阅读全文