基于PyTorch的UNet预训练模型
时间: 2024-01-05 22:02:17 浏览: 112
你可以使用torchvision内置的预训练模型来实现UNet模型,例如ResNet、VGG等。这些模型已经在ImageNet上进行了预训练,可以直接用于图像分割任务。
下面是一个使用ResNet50作为编码器的UNet模型的示例代码:
```python
import torch
import torch.nn as nn
import torchvision.models as models
class DoubleConv(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, 3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.conv(x)
class UNet(nn.Module):
def __init__(self, n_classes):
super().__init__()
self.encoder = models.resnet50(pretrained=True)
self.pool = nn.MaxPool2d(2, 2)
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv0 = DoubleConv(3, 64)
self.conv1 = DoubleConv(64, 128)
self.conv2 = DoubleConv(128, 256)
self.conv3 = DoubleConv(256, 512)
self.conv4 = DoubleConv(512, 1024)
self.center = DoubleConv(2048, 1024)
self.dec4 = DoubleConv(1024 + 512, 512)
self.dec3 = DoubleConv(512 + 256, 256)
self.dec2 = DoubleConv(256 + 128, 128)
self.dec1 = DoubleConv(128 + 64, 64)
self.final = nn.Conv2d(64, n_classes, 1)
def forward(self, x):
conv0 = self.conv0(x)
conv1 = self.conv1(self.pool(conv0))
conv2 = self.conv2(self.pool(conv1))
conv3 = self.conv3(self.pool(conv2))
conv4 = self.conv4(self.pool(conv3))
center = self.center(torch.cat([conv4, self.encoder.conv1(conv3)], dim=1))
dec4 = self.dec4(torch.cat([center, conv4], dim=1))
dec3 = self.dec3(torch.cat([self.up(dec4), conv3], dim=1))
dec2 = self.dec2(torch.cat([self.up(dec3), conv2], dim=1))
dec1 = self.dec1(torch.cat([self.up(dec2), conv1], dim=1))
return self.final(dec1)
```
在这个模型中,首先使用预训练的ResNet50作为编码器,然后添加了几个上采样和下采样的模块,最后通过一个1x1卷积层输出预测结果。这个模型可以用于二分类任务,如果要进行多分类任务,只需要将最后一个卷积层的输出通道数改为类别数即可。
在实际使用中,可以根据自己的任务需求进行调整和修改。
阅读全文