帮我写出PyTorch框架实现的VGG16_UNET的代码,其中最初输入图像大小为256x256,最终输出特征图大小为256x256,通道数为3
时间: 2024-02-11 09:08:02 浏览: 63
Pytorch下实现Unet对自己多类别数据集的语义分割
好的,以下是基于PyTorch框架实现的VGG16_UNET代码:
```python
import torch
import torch.nn as nn
class VGG16_UNET(nn.Module):
def __init__(self):
super(VGG16_UNET, self).__init__()
# Encoder
self.encoder_block1 = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.encoder_block2 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.encoder_block3 = nn.Sequential(
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.encoder_block4 = nn.Sequential(
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.encoder_block5 = nn.Sequential(
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
)
# Decoder
self.decoder_block1 = nn.Sequential(
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2)
)
self.decoder_block2 = nn.Sequential(
nn.Conv2d(512, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2)
)
self.decoder_block3 = nn.Sequential(
nn.Conv2d(256, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2)
)
self.decoder_block4 = nn.Sequential(
nn.Conv2d(128, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 3, kernel_size=1)
)
def forward(self, x):
# Encoder
x1 = self.encoder_block1(x)
x2 = self.encoder_block2(x1)
x3 = self.encoder_block3(x2)
x4 = self.encoder_block4(x3)
x5 = self.encoder_block5(x4)
# Decoder
d1 = self.decoder_block1(x5)
d1 = torch.cat([x4, d1], dim=1)
d2 = self.decoder_block2(d1)
d2 = torch.cat([x3, d2], dim=1)
d3 = self.decoder_block3(d2)
d3 = torch.cat([x2, d3], dim=1)
d4 = self.decoder_block4(d3)
d4 = torch.cat([x1, d4], dim=1)
return d4
```
其中,VGG16_UNET模型包含了一个Encoder和一个Decoder,Encoder中包含了5个卷积层和池化层,Decoder中包含了4个卷积层和反卷积层。在forward函数中,我们首先通过Encoder将输入的图像特征逐步降采样,然后通过Decoder将特征图逐步上采样,最终输出256x256大小的特征图。
阅读全文