encoder = LabelEncoder() train['Class'] = encoder.fit_transform(train['Class']) test['Class'] = encoder.transform(test['Class'])是什么意思
时间: 2024-01-28 21:02:43 浏览: 54
这段代码使用了 `LabelEncoder()` 类来对训练数据集和测试数据集中的标签(类别)进行编码,将标签转换为整数表示。具体来说,`fit_transform()` 方法对训练数据集中的标签进行拟合并转换,`transform()` 方法将测试数据集中的标签转换成训练数据集中已经拟合的编码方式。
例如,如果训练数据集中有三个类别,分别为 A、B 和 C,那么使用 `LabelEncoder()` 类对它们进行编码后,可能得到的结果是 A 对应 0,B 对应 1,C 对应 2。这样做的好处是,可以将标签转换为数字,方便后续的分类器等模型进行处理和计算。
相关问题
x_train = train.drop(['id','label'], axis=1) y_train = train['label'] x_test=test.drop(['id'], axis=1) def abs_sum(y_pre,y_tru): y_pre=np.array(y_pre) y_tru=np.array(y_tru) loss=sum(sum(abs(y_pre-y_tru))) return loss def cv_model(clf, train_x, train_y, test_x, clf_name): folds = 5 seed = 2021 kf = KFold(n_splits=folds, shuffle=True, random_state=seed) test = np.zeros((test_x.shape[0],4)) cv_scores = [] onehot_encoder = OneHotEncoder(sparse=False) for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): print('************************************ {} ************************************'.format(str(i+1))) trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index] if clf_name == "lgb": train_matrix = clf.Dataset(trn_x, label=trn_y) valid_matrix = clf.Dataset(val_x, label=val_y) params = { 'boosting_type': 'gbdt', 'objective': 'multiclass', 'num_class': 4, 'num_leaves': 2 ** 5, 'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 4, 'learning_rate': 0.1, 'seed': seed, 'nthread': 28, 'n_jobs':24, 'verbose': -1, } model = clf.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=2000, verbose_eval=100, early_stopping_rounds=200) val_pred = model.predict(val_x, num_iteration=model.best_iteration) test_pred = model.predict(test_x, num_iteration=model.best_iteration) val_y=np.array(val_y).reshape(-1, 1) val_y = onehot_encoder.fit_transform(val_y) print('预测的概率矩阵为:') print(test_pred) test += test_pred score=abs_sum(val_y, val_pred) cv_scores.append(score) print(cv_scores) print("%s_scotrainre_list:" % clf_name, cv_scores) print("%s_score_mean:" % clf_name, np.mean(cv_scores)) print("%s_score_std:" % clf_name, np.std(cv_scores)) test=test/kf.n_splits return test def lgb_model(x_train, y_train, x_test): lgb_test = cv_model(lgb, x_train, y_train, x_test, "lgb") return lgb_test lgb_test = lgb_model(x_train, y_train, x_test) 这段代码运用了什么学习模型
这段代码运用了LightGBM模型(lgb)进行多分类任务的学习和预测。其中,使用了K折交叉验证(KFold)来划分训练集和验证集,避免过拟合和欠拟合。在训练过程中,使用了绝对误差和(abs_sum)作为损失函数。在LightGBM模型的参数设置上,使用了gbdt算法进行梯度提升决策树,num_class参数设置为4,表示有4个类别;num_leaves参数设置为2的5次方,表示叶节点的数量;feature_fraction和bagging_fraction是特征和样本的子抽样比例;learning_rate是学习率;early_stopping_rounds设置为200,表示在验证集上连续200次迭代中没有提高时,停止训练;n_jobs和nthread是并行训练的参数。最终,返回了测试集上的预测结果(lgb_test)。
解释以下代码:def cv_model(clf, train_x, train_y, test_x, clf_name): folds = 5 seed = 2021 kf = KFold(n_splits=folds, shuffle=True, random_state=seed) test = np.zeros((test_x.shape[0],4)) cv_scores = [] onehot_encoder = OneHotEncoder(sparse=False) for i, (train_index, valid_index) in enumerate(kf.split(train_x, train_y)): print('************************************ {} ************************************'.format(str(i+1))) trn_x, trn_y, val_x, val_y = train_x.iloc[train_index], train_y[train_index], train_x.iloc[valid_index], train_y[valid_index] if clf_name == "lgb": train_matrix = clf.Dataset(trn_x, label=trn_y) valid_matrix = clf.Dataset(val_x, label=val_y) params = { 'boosting_type': 'gbdt', 'objective': 'multiclass', 'num_class': 4, 'num_leaves': 2 ** 5, 'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 4, 'learning_rate': 0.1, 'seed': seed, 'nthread': 28, 'n_jobs':24, 'verbose': -1, } model = clf.train(params, train_set=train_matrix, valid_sets=valid_matrix, num_boost_round=2000, verbose_eval=100, early_stopping_rounds=200) val_pred = model.predict(val_x, num_iteration=model.best_iteration) test_pred = model.predict(test_x, num_iteration=model.best_iteration) val_y=np.array(val_y).reshape(-1, 1) val_y = onehot_encoder.fit_transform(val_y) print('预测的概率矩阵为:') print(test_pred) test += test_pred score=abs_sum(val_y, val_pred) cv_scores.append(score) print(cv_scores) print("%s_scotrainre_list:" % clf_name, cv_scores) print("%s_score_mean:" % clf_name, np.mean(cv_scores)) print("%s_score_std:" % clf_name, np.std(cv_scores)) test=test/kf.n_splits return test
这段代码定义了一个函数`cv_model`,用于进行交叉验证和模型训练。函数的输入包括分类器`clf`,训练数据`train_x`和`train_y`,测试数据`test_x`,以及分类器名称`clf_name`。函数的输出为测试数据的预测结果。具体的实现步骤如下:
1. 将训练数据分为5折,设置随机种子为2021。
2. 初始化`test`数组,用于存储每一折的测试数据预测结果。
3. 使用`OneHotEncoder`进行标签编码,将分类器输出的标签转换为one-hot编码。
4. 针对每一折的训练数据和验证数据,使用指定的分类器进行模型训练。如果分类器名称为"lgb",则使用LightGBM进行训练。在LightGBM的训练过程中,使用了早停策略和交叉验证,以避免过拟合和提高模型的泛化性能。训练完成后,对验证数据进行预测,并将预测结果存储在`val_pred`中。同时,对测试数据进行预测,并将预测结果存储在`test_pred`中。
5. 将`val_y`和`val_pred`作为输入,调用`abs_sum`函数计算模型的评价指标。将评价指标存储在`cv_scores`中,并输出评价指标的值。
6. 将每一折的测试数据预测结果累加到`test`数组中。
7. 计算所有折的评价指标的平均值和标准差,并输出结果。
8. 将`test`数组除以折数,得到测试数据的平均预测结果,并将其作为函数的输出返回。
阅读全文