File ~/anaconda3/envs/songshuhui/lib/python3.8/site-packages/pandas/core/ops/array_ops.py:279, in comparison_op(left, right, op) 270 raise ValueError( 271 "Lengths must match to compare", lvalues.shape, rvalues.shape 272 ) 274 if should_extension_dispatch(lvalues, rvalues) or ( 275 (isinstance(rvalues, (Timedelta, BaseOffset, Timestamp)) or right is NaT) 276 and not is_object_dtype(lvalues.dtype) 277 ): 278 # Call the method on lvalues --> 279 res_values = op(lvalues, rvalues) 281 elif is_scalar(rvalues) and isna(rvalues): # TODO: but not pd.NA? 282 # numpy does not like comparisons vs None 283 if op is operator.ne: TypeError: '>' not supported between instances of 'GeometryArray' and 'float'
时间: 2024-02-14 08:10:29 浏览: 158
这个错误是由于`pandas`库中算术运算符(如`>`)无法对`GeometryArray`和`float`类型的数据进行比较。`GeometryArray`是`geopandas`库中的一种数据类型,用于存储几何图形数据。
要解决这个问题,需要使用`geopandas`库中提供的方法来进行几何图形数据的比较。例如,如果要比较两个几何图形的面积大小,可以使用以下方法:
```
import geopandas as gpd
# 读取几何图形数据
gdf = gpd.read_file('data.shp')
# 计算几何图形的面积
gdf['area'] = gdf.area
# 按面积大小排序
gdf = gdf.sort_values('area', ascending=False)
```
在这个例子中,使用`area`方法计算几何图形的面积,并使用`sort_values`方法按面积大小排序。这些方法都是`geopandas`库中提供的,可以用于处理几何图形数据。
相关问题
Traceback (most recent call last): File "/Users/gaofei/PycharmProjects/pythonProject/main.py", line 45, in <module> df = pd.read_excel("/Users/gaofei/Desktop/whseed.xlsx") File "/Users/gaofei/anaconda3/envs/pytorch_learning/lib/python3.10/site-packages/pandas/util/_decorators.py", line 211, in wrapper return func(*args, **kwargs) File "/Users/gaofei/anaconda3/envs/pytorch_learning/lib/python3.10/site-packages/pandas/util/_decorators.py", line 331, in wrapper return func(*args, **kwargs) File "/Users/gaofei/anaconda3/envs/pytorch_learning/lib/python3.10/site-packages/pandas/io/excel/_base.py", line 482, in read_excel io = ExcelFile(io, storage_options=storage_options, engine=engine) File "/Users/gaofei/anaconda3/envs/pytorch_learning/lib/python3.10/site-packages/pandas/io/excel/_base.py", line 1695, in __init__ self._reader = self._engines[engine](self._io, storage_options=storage_options) File "/Users/gaofei/anaconda3/envs/pytorch_learning/lib/python3.10/site-packages/pandas/io/excel/_openpyxl.py", line 556, in __init__ import_optional_dependency("openpyxl") File "/Users/gaofei/anaconda3/envs/pytorch_learning/lib/python3.10/site-packages/pandas/compat/_optional.py", line 144, in import_optional_dependency raise ImportError(msg) ImportError: Missing optional dependency 'openpyxl'. Use pip or conda to install openpyxl.
这是一个 Python 错误信息,提示缺少 openpyxl 库的依赖。在读取 Excel 文件时,pandas 库默认使用 openpyxl 库来解析 Excel 文件,但是在当前环境中没有找到该库。解决方法是使用 pip 或 conda 命令安装 openpyxl 库,具体命令如下:
使用 pip 安装:
```
pip install openpyxl
```
使用 conda 安装:
```
conda install openpyxl
```
安装完成后,再次运行代码即可。
输出报错runcell(0, '/Users/mac/??????.py') Traceback (most recent call last): File ~/anaconda3/lib/python3.10/site-packages/spyder_kernels/py3compat.py:356 in compat_exec exec(code, globals, locals) File ~/??????.py:36 df2=df2.sort_values(by='??/?',ascending=False) File ~/anaconda3/lib/python3.10/site-packages/pandas/util/_decorators.py:331 in wrapper return func(*args, **kwargs) File ~/anaconda3/lib/python3.10/site-packages/pandas/core/frame.py:6912 in sort_values k = self._get_label_or_level_values(by, axis=axis) File ~/anaconda3/lib/python3.10/site-packages/pandas/core/generic.py:1850 in _get_label_or_level_values raise KeyError(key) KeyError: ‘人数/万’,重新修改一下这个程序
根据错误信息看来,出现了`KeyError`异常,即没有找到名为`'人数/万'`的列。你可以检查一下DataFrame是否包含该列,或者该列名是否拼写正确。另外,为了避免出现中文乱码问题,可以在文件开头添加如下代码,设置编码为UTF-8:
```python
# -*- coding: utf-8 -*-
```
根据你提供的代码,修改后的程序如下:
```python
# -*- coding: utf-8 -*-
import requests
from bs4 import BeautifulSoup
import pandas as pd
url = 'https://www.gk100.com/read_16892539.htm'
header = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/15.5 Safari/605.1.15"}
r = requests.get(url, headers=header)
r.encoding = r.apparent_encoding
soup = BeautifulSoup(r.text, features="lxml")
w1 = soup.find_all("td")
result = w1
df = pd.DataFrame(result)
df1 = df[2:]
for index in df1:
d1 = df1[df1.index%2==0]
d2 = df1[df1.index%2!=0]
d1 = d1.reset_index(drop=True)
d2 = d2.reset_index(drop=True)
df2 = pd.concat([d1,d2], axis=1)
# 排序,按照第二列的元素进行降序排列
df2 = df2.sort_values(by='??/?', ascending=False)
title = ['省份', '人数/万']
df2.columns = title
print(df2)
```
需要注意的是,你的代码中`by='??/?'`的部分中文字符被替换成了问号,可能是文件编码不太兼容,你需要手动修改为正确的列名。
阅读全文