R语言编写简单的距离判别函数
时间: 2023-07-10 11:25:56 浏览: 176
以下是一个简单的距离判别函数的 R 语言实现:
```R
distance_discriminant <- function(train_data, train_group, new_data) {
n_train <- nrow(train_data)
n_features <- ncol(train_data)
group_levels <- unique(train_group)
n_groups <- length(group_levels)
means <- matrix(0, n_groups, n_features)
# 计算各组的均值
for (i in 1:n_groups) {
means[i,] <- colMeans(train_data[train_group == group_levels[i],])
}
# 计算各组的协方差矩阵
covs <- list()
for (i in 1:n_groups) {
covs[[i]] <- cov(train_data[train_group == group_levels[i],])
}
# 计算马氏距离
distances <- matrix(0, nrow(new_data), n_groups)
for (i in 1:n_groups) {
distances[,i] <- mahalanobis(new_data, means[i,], covs[[i]])
}
# 返回分类结果
group_levels[apply(distances, 1, which.min)]
}
```
该函数接受三个参数:
- `train_data`:训练数据,一个矩阵或数据框,每行代表一个样本,每列代表一个特征。
- `train_group`:训练数据的分组信息,一个向量,其中每个元素代表对应样本所属的组别。
- `new_data`:待预测数据,一个矩阵或数据框,每行代表一个样本,每列代表一个特征。
该函数的实现过程如下:
1. 计算训练数据中各组的均值。
2. 计算训练数据中各组的协方差矩阵。
3. 对于每个待预测样本,计算其到各组均值的马氏距离。
4. 将每个待预测样本分类到距离最近的组。
使用示例:
```R
# 创建一个数据集
x1 <- c(1, 2, 3, 4, 5)
y1 <- c(1, 2, 1, 2, 1)
x2 <- c(10, 11, 12, 13, 14)
y2 <- c(10, 9, 10, 9, 10)
train_data <- rbind(cbind(x1, y1), cbind(x2, y2))
train_group <- c(rep("A", 5), rep("B", 5))
new_data <- cbind(c(3, 5, 11, 13), c(1, 1, 9, 10))
# 使用距离判别函数进行分类
distance_discriminant(train_data, train_group, new_data)
```
输出结果为:
```
[1] "A" "A" "B" "B"
```
表示四个待预测样本分别被分类到了 A 组和 B 组。
阅读全文
相关推荐

















