基于lab的黑白图片彩色化代码
时间: 2024-05-04 20:18:08 浏览: 135
这是一个基于PyTorch和LAB色彩空间的黑白图片彩色化代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torchvision import datasets, transforms
from PIL import Image
import numpy as np
# 定义转换器,将PIL图像转换为张量,并将图像归一化到[-1,1]之间
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
# 定义数据集
train_data = datasets.ImageFolder('path/to/folder', transform=transform)
# 创建数据加载器
train_loader = torch.utils.data.DataLoader(train_data, batch_size=64, shuffle=True)
# 定义网络结构
class ColorNet(nn.Module):
def __init__(self):
super(ColorNet, self).__init__()
self.conv1 = nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1)
self.conv5 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.conv6 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.conv7 = nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1)
self.conv8 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
self.conv9 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv10 = nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1)
self.conv11 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv12 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv13 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv14 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv15 = nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=1)
self.fc1 = nn.Linear(512 * 7 * 7, 4096)
self.fc2 = nn.Linear(4096, 4096)
self.fc3 = nn.Linear(4096, 1000)
self.fc4 = nn.Linear(1000, 256 * 8 * 8)
self.deconv1 = nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1)
self.deconv2 = nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1)
self.deconv3 = nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1)
self.deconv4 = nn.ConvTranspose2d(32, 2, kernel_size=4, stride=2, padding=1)
def forward(self, x):
x = nn.functional.relu(self.conv1(x))
x = nn.functional.relu(self.conv2(x))
x = nn.functional.relu(self.conv3(x))
x = nn.functional.relu(self.conv4(x))
x = nn.functional.relu(self.conv5(x))
x = nn.functional.relu(self.conv6(x))
x = nn.functional.relu(self.conv7(x))
x = nn.functional.relu(self.conv8(x))
x = nn.functional.relu(self.conv9(x))
x = nn.functional.relu(self.conv10(x))
x = nn.functional.relu(self.conv11(x))
x = nn.functional.relu(self.conv12(x))
x = nn.functional.relu(self.conv13(x))
x = nn.functional.relu(self.conv14(x))
x = nn.functional.relu(self.conv15(x))
x = x.view(-1, 512 * 7 * 7)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.dropout(x, p=0.5)
x = nn.functional.relu(self.fc2(x))
x = nn.functional.dropout(x, p=0.5)
x = nn.functional.relu(self.fc3(x))
x = nn.functional.dropout(x, p=0.5)
x = nn.functional.relu(self.fc4(x))
x = x.view(-1, 256, 8, 8)
x = nn.functional.relu(self.deconv1(x))
x = nn.functional.relu(self.deconv2(x))
x = nn.functional.relu(self.deconv3(x))
x = nn.functional.tanh(self.deconv4(x))
return x
# 定义损失函数和优化器
net = ColorNet()
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
# 训练网络
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader):
inputs, _ = data
lab = np.zeros((inputs.shape[0], 3, 64, 64))
for j in range(inputs.shape[0]):
img = inputs[j].numpy().transpose((1, 2, 0))
lab[j] = np.array(Image.fromarray((img + 1) / 2 * 255).convert('LAB'))[..., 1:]
lab[j] /= 128
inputs = torch.from_numpy(lab[:, np.newaxis, :, :]).float()
inputs, _ = Variable(inputs), Variable(inputs)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, inputs)
loss.backward()
optimizer.step()
running_loss += loss.data[0]
if i % 10 == 9:
print('[%d, %5d] loss: %.6f' % (epoch + 1, i + 1, running_loss / 10))
running_loss = 0.0
print('Finished Training')
# 保存模型
torch.save(net.state_dict(), 'path/to/save/model.pth')
```
在上面的代码中,我们定义了一个名为`ColorNet`的卷积神经网络,它接受L通道的灰度图像,并输出AB通道的彩色图像。我们使用MSE损失函数和Adam优化器来训练网络。
在训练过程中,我们将输入图像转换为LAB色彩空间,并将L通道作为网络的输入。在每个训练迭代中,我们计算网络的输出与输入之间的MSE损失,并使用反向传播来更新网络的权重。最终,我们保存了训练好的模型。
在使用训练好的模型进行彩色化时,我们可以将灰度图像转换为LAB色彩空间,并将L通道输入到网络中。网络输出的AB通道可以与原始L通道合并为彩色图像。
阅读全文