温度采集adc dac代码如何写

时间: 2023-04-02 19:04:08 浏览: 79
温度采集ADC和DAC代码的编写需要根据具体的硬件平台和传感器类型进行选择和设计。一般来说,采集温度的传感器可以是热敏电阻、热电偶、温度传感器等。对于不同的传感器,采集和处理的方法也不同。一般来说,可以通过调用相应的库函数或者编写相应的驱动程序来实现温度采集和DAC输出。具体实现方法可以参考相关的硬件和软件文档。
相关问题

stm32温度采集adc dac代码如何写

您好,以下是关于 stm32 温度采集 adc dac 代码的示例: 首先,您需要初始化 ADC 和 DAC 模块,然后设置 ADC 采样率和 DAC 输出电压。接下来,您可以使用 ADC 采集温度传感器的电压值,并将其转换为实际温度值。最后,您可以使用 DAC 输出控制电压来控制温度。 以下是示例代码: #include "stm32f4xx.h" void ADC_Init(void) { ADC_InitTypeDef ADC_InitStruct; GPIO_InitTypeDef GPIO_InitStruct; RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); GPIO_InitStruct.GPIO_Pin = GPIO_Pin_; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AN; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStruct); ADC_CommonInitTypeDef ADC_CommonInitStruct; ADC_CommonInitStruct.ADC_Mode = ADC_Mode_Independent; ADC_CommonInitStruct.ADC_Prescaler = ADC_Prescaler_Div2; ADC_CommonInitStruct.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; ADC_CommonInitStruct.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; ADC_CommonInit(&ADC_CommonInitStruct); ADC_InitStruct.ADC_Resolution = ADC_Resolution_12b; ADC_InitStruct.ADC_ScanConvMode = DISABLE; ADC_InitStruct.ADC_ContinuousConvMode = DISABLE; ADC_InitStruct.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; ADC_InitStruct.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC1; ADC_InitStruct.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStruct.ADC_NbrOfConversion = 1; ADC_Init(ADC1, &ADC_InitStruct); ADC_Cmd(ADC1, ENABLE); } void DAC_Init(void) { DAC_InitTypeDef DAC_InitStruct; GPIO_InitTypeDef GPIO_InitStruct; RCC_APB1PeriphClockCmd(RCC_APB1Periph_DAC, ENABLE); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); GPIO_InitStruct.GPIO_Pin = GPIO_Pin_4; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AN; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStruct); DAC_InitStruct.DAC_Trigger = DAC_Trigger_None; DAC_InitStruct.DAC_WaveGeneration = DAC_WaveGeneration_None; DAC_InitStruct.DAC_OutputBuffer = DAC_OutputBuffer_Enable; DAC_Init(DAC_Channel_1, &DAC_InitStruct); DAC_Cmd(DAC_Channel_1, ENABLE); } float Get_Temperature(void) { uint16_t adc_value = ; float temperature = .; ADC_RegularChannelConfig(ADC1, ADC_Channel_, 1, ADC_SampleTime_84Cycles); ADC_SoftwareStartConv(ADC1); while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC)); adc_value = ADC_GetConversionValue(ADC1); temperature = (float)adc_value / 4096. * 3.3; temperature = (temperature - .76) / .0025 + 25.; return temperature; } void Set_Temperature(float temperature) { uint16_t dac_value = ; dac_value = (uint16_t)(temperature / 3.3 * 4096.); DAC_SetChannel1Data(DAC_Align_12b_R, dac_value); } int main(void) { ADC_Init(); DAC_Init(); while(1) { float temperature = Get_Temperature(); Set_Temperature(temperature + 5.); } }

stm32adc采集温度代码如何写

您好,以下是关于 stm32adc 采集温度的代码示例: 首先,需要配置 ADC 的通道和采样时间,以及开启 ADC 的时钟: ``` RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); // 开启 ADC1 时钟 ADC_InitTypeDef ADC_InitStructure; ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; ADC_InitStructure.ADC_ScanConvMode = DISABLE; ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = 1; ADC_Init(ADC1, &ADC_InitStructure); ADC_RegularChannelConfig(ADC1, ADC_Channel_16, 1, ADC_SampleTime_239Cycles5); // 配置 ADC1 通道 16,采样时间为 239.5 个时钟周期 ``` 然后,可以通过以下代码获取温度值: ``` ADC_SoftwareStartConvCmd(ADC1, ENABLE); // 开始 ADC 转换 while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC)); // 等待转换完成 uint16_t adc_value = ADC_GetConversionValue(ADC1); // 获取 ADC 转换结果 float temperature = (float)(adc_value * 3.3 / 4096 - .76) / .0025 + 25; // 计算温度值 ``` 其中,温度值的计算公式为:温度 = (ADC 值 * 3.3 / 4096 - .76) / .0025 + 25。 希望能对您有所帮助。

相关推荐

最新推荐

recommend-type

解析高速ADC和DAC与FPGA的配合使用

许多数字处理系统都会使用FPGA,原因是FPGA有大量...因此,通常情况下,FPGA都要和高性能的ADC和DAC进行接口,比如e2v EV10AQ190低功耗四通道10-bit 1.25 GspsADC和EV12DS130A内建4/2:1 MUX的低功耗12-bit 3 Gsps DAC。
recommend-type

高速ADC和DAC如何与FPGA配合使用

许多数字处理系统都会使用FPGA,原因是FPGA有大量的专用DSP以及block RAM资源,可以用于实现并行和流水线算法。
recommend-type

用DMA实现多路ADC通道数据采集

今天尝试了下STM32的ADC采样,并利用DMA实现采样数据的直接搬运存储,这样就不用CPU去参与操作了。
recommend-type

MPC5744P-ADC采集.doc

MPC5744处理器ADC部分讲解,中文内容,来源于网络,后经本人矫正!
recommend-type

CJC5340/4344ADC、DAC,替换CS5340数模转换器,100dB192KHz多位音频A/D转换器,音频Codec

CJC5340,ADC、DAC,替换CS5340,数模转换器,100dB192KHz多位音频A/D转换器,音频Codec 100dB192KHz多位音频A/D转换器 1.先进多位架构 2. 24位转换¨ 3.支持所有音频样本率包括192KHz¨ 4. 88分贝THD+N¨ 5.77mW...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。