如何在yolov4中添加自注意力机制模块
时间: 2023-06-29 22:05:47 浏览: 144
在 YOLOv4 中添加自注意力机制模块,主要涉及以下两个步骤:
1. 实现自注意力模块
自注意力机制可以通过 self-attention module 实现。该模块可以基于全局信息自适应地计算出每个位置的权重,以更好地聚焦于重要的特征。下面是一个基本的自注意力模块的实现示例:
```python
class SelfAttention(nn.Module):
def __init__(self, in_channels):
super(SelfAttention, self).__init__()
self.query_conv = nn.Conv2d(in_channels=in_channels, out_channels=in_channels//8, kernel_size=1)
self.key_conv = nn.Conv2d(in_channels=in_channels, out_channels=in_channels//8, kernel_size=1)
self.value_conv = nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=1)
self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
batch_size, channels, height, width = x.size()
proj_query = self.query_conv(x).view(batch_size, -1, width*height).permute(0, 2, 1)
proj_key = self.key_conv(x).view(batch_size, -1, width*height)
energy = torch.bmm(proj_query, proj_key)
attention = torch.softmax(energy, dim=-1)
proj_value = self.value_conv(x).view(batch_size, -1, width*height)
out = torch.bmm(proj_value, attention.permute(0, 2, 1))
out = out.view(batch_size, channels, height, width)
out = self.gamma * out + x
return out
```
2. 在 YOLOv4 中添加自注意力模块
在 YOLOv4 的网络结构中,可以将自注意力模块添加到卷积层的后面。假设我们要在 YOLOv4 的 CSPDarknet53 中添加自注意力模块,则可以按以下方式修改代码:
```python
class CSPDarknet53(nn.Module):
def __init__(self):
super(CSPDarknet53, self).__init__()
# ...省略其他代码
self.attention1 = SelfAttention(in_channels=128)
self.attention2 = SelfAttention(in_channels=256)
self.attention3 = SelfAttention(in_channels=512)
def forward(self, x):
# ...省略其他代码
x = self.conv5(x)
# 添加自注意力模块
x = self.attention1(x)
x = self.conv6(x)
x = self.conv7(x)
# 添加自注意力模块
x = self.attention2(x)
x = self.conv8(x)
# 添加自注意力模块
x = self.attention3(x)
x = self.conv9(x)
x = self.conv10(x)
return x
```
在上面的代码中,我们在 CSPDarknet53 的第 5、7 和 8 层之后添加了自注意力模块。这样做可以提高模型的感受野,并且更好地捕捉目标的上下文信息。
阅读全文
相关推荐


















