yolov5 7.0添加CBAM注意力机制
时间: 2023-07-31 18:08:53 浏览: 342
要在Yolov5 7.0中添加CBAM(Channel Attention Module)注意力机制,您可以按照以下步骤进行操作:
1. 导入所需的库和模块:
```python
import torch
from torch import nn
```
2. 定义CBAM模块:
```python
class CBAM(nn.Module):
def __init__(self, channels, reduction):
super(CBAM, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0)
self.relu1 = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0)
self.conv = nn.Conv2d(channels, 1, kernel_size=7, padding=3)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
attn = self.sigmoid(avg_out + max_out)
out = x * attn
spatial_attn = self.sigmoid(self.conv(out))
out = out * spatial_attn
return out
```
3. 修改Yolov5模型的定义,将CBAM模块添加到适当的位置:
```python
from models.common import Conv
class YOLOv5(nn.Module):
def __init__(self, ...):
super(YOLOv5, self).__init__()
# 在需要的位置添加CBAM模块
self.cbam1 = CBAM(channels=64, reduction=16)
self.cbam2 = CBAM(channels=128, reduction=16)
self.cbam3 = CBAM(channels=256, reduction=16)
self.cbam4 = CBAM(channels=512, reduction=16)
self.cbam5 = CBAM(channels=1024, reduction=16)
...
def forward(self, x):
...
x3 = self.m2(x2)
x3 = self.cbam3(x3) # 添加CBAM模块
x4 = self.m3(x3)
x4 = self.cbam4(x4) # 添加CBAM模块
x5 = self.m4(x4)
x5 = self.cbam5(x5) # 添加CBAM模块
...
return ...
```
通过以上步骤,您就可以将CBAM注意力机制添加到Yolov5 7.0中了。请注意,这只是一个示例代码,具体的实现可能需要根据您的需求进行调整和修改。
阅读全文