如何在YOLOv7算法中添加CBAM注意力机制
时间: 2024-04-30 19:19:09 浏览: 251
YOLOv8中加入CBAM注意力机制
在YOLOv7算法中添加CBAM注意力机制,可以按照以下步骤进行:
1. 下载CBAM模块的代码,并将其添加到YOLOv7的代码库中。
2. 在YOLOv7的模型定义中,添加CBAM模块。具体来说,在YOLOv7的模型定义中,可以使用以下代码来添加CBAM模块:
```
class CBAM(nn.Module):
def __init__(self, channels, reduction):
super(CBAM, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0)
self.sigmoid_channel = nn.Sigmoid()
self.conv_after_concat = nn.Conv2d(2, 1, kernel_size=3, stride=1, padding=1)
self.sigmoid_spatial = nn.Sigmoid()
def forward(self, x):
module_input = x
avg = self.avg_pool(x)
max = self.max_pool(x)
avg = self.fc1(avg)
max = self.fc1(max)
avg = self.relu(avg)
max = self.relu(max)
avg = self.fc2(avg)
max = self.fc2(max)
channel_attention = self.sigmoid_channel(avg + max)
spatial_attention = torch.cat([avg, max], dim=1)
spatial_attention = self.conv_after_concat(spatial_attention)
spatial_attention = self.sigmoid_spatial(spatial_attention)
x = x * channel_attention * spatial_attention
return x
```
3. 在YOLOv7的网络结构中,添加CBAM模块。具体来说,在YOLOv7的网络结构中,可以使用以下代码来添加CBAM模块:
```
class YOLOv7(nn.Module):
def __init__(self, num_classes, anchors, num_anchors, strides, scales, cbam=False):
super(YOLOv7, self).__init__()
self.num_classes = num_classes
self.anchors = anchors
self.num_anchors = num_anchors
self.strides = strides
self.scales = scales
self.cbam = cbam
self.backbone = nn.ModuleList()
self.neck = nn.ModuleList()
self.head = nn.ModuleList()
# backbone
self.backbone.append(CSPDarknet53())
# neck
self.neck.append(Conv(1024, 512, 1))
self.neck.append(Conv(512, 1024, 3))
self.neck.append(Conv(1024, 512, 1))
self.neck.append(Conv(512, 1024, 3))
self.neck.append(Conv(1024, 512, 1))
# CBAM module
if self.cbam:
self.cbam_module = CBAM(512, 16)
# head
final_out_filter = len(anchors[0]) * (num_classes + 5)
self.head.append(Conv(512, 1024, 3))
self.head.append(nn.Conv2d(1024, final_out_filter, 1, 1, 0))
def forward(self, x):
x = self.backbone[0](x)
x = self.neck[0](x)
x = self.neck[1](x)
x = self.neck[2](x)
x = self.neck[3](x)
x = self.neck[4](x)
# CBAM module
if self.cbam:
x = self.cbam_module(x)
x = self.head[0](x)
x = self.head[1](x)
return x
```
4. 在训练YOLOv7模型时,将CBAM模块添加到模型中。
以上是在YOLOv7算法中添加CBAM注意力机制的步骤,这样可以提高YOLOv7模型的精度和性能。
阅读全文