向DS18B20写入一个字节

时间: 2024-04-28 07:22:09 浏览: 17
向DS18B20写入一个字节需要遵循如下步骤: 1. 将总线拉低至少1微秒,以发送一个低电平脉冲信号,表示要向DS18B20发送数据。 2. 发送8位数据,从最低位开始。每个位发送时,将总线拉低至少1微秒表示0或拉低更长时间表示1,然后将总线拉高至少60微秒,以使DS18B20读取数据。 3. 等待DS18B20确认接收数据。确认信号由DS18B20发送,它会将总线拉低至少60微秒,表示已接收到数据。 4. 将总线拉高至少1微秒,以表示数据传输结束。 需要注意的是,写入数据之前,需要先向DS18B20发送“写使能命令”,以使DS18B20准备好接收数据。写使能命令的具体步骤可以参考DS18B20的数据手册。
相关问题

基于51单片机写一个DS18B20的驱动代码

以下是基于51单片机的DS18B20驱动代码,其中使用了延时函数。 ```c #include <reg51.h> #define DQ P1_0 // 定义DS18B20的数据引脚 void delay_us(unsigned int t) // 微秒级延时函数 { while(t--); } void delay_ms(unsigned int t) // 毫秒级延时函数 { unsigned int i, j; for(i = 0; i < t; i++) for(j = 0; j < 112; j++); } unsigned char DS18B20_init() // 初始化DS18B20 { unsigned char i; DQ = 1; // 先将数据线拉高 delay_us(1); // 延时1微秒 DQ = 0; // 将数据线拉低 delay_us(500); // 延时500微秒 DQ = 1; // 将数据线拉高 delay_us(60); // 延时60微秒 i = DQ; // 读取DS18B20的应答信号 delay_us(240); // 延时240微秒 return i; // 返回DS18B20的应答信号 } void DS18B20_write_byte(unsigned char dat) // 向DS18B20写入一个字节 { unsigned char i; for(i = 0; i < 8; i++) { DQ = 0; // 将数据线拉低 delay_us(2); // 延时2微秒 DQ = dat & 0x01; // 写入最低位 delay_us(60); // 延时60微秒 DQ = 1; // 将数据线拉高 dat >>= 1; // 右移一位 } } unsigned char DS18B20_read_byte() // 从DS18B20读取一个字节 { unsigned char i, dat = 0; for(i = 0; i < 8; i++) { DQ = 0; // 将数据线拉低 delay_us(2); // 延时2微秒 DQ = 1; // 将数据线拉高 delay_us(2); // 延时2微秒 dat >>= 1; // 右移一位 if(DQ) dat |= 0x80; // 如果数据线为高,则将最高位设为1 delay_us(60); // 延时60微秒 } return dat; } void DS18B20_start() // 启动DS18B20的温度转换 { DS18B20_init(); // 初始化DS18B20 DS18B20_write_byte(0xCC); // 跳过ROM操作 DS18B20_write_byte(0x44); // 启动温度转换 } unsigned int DS18B20_read_temp() // 读取DS18B20的温度值 { unsigned char TL, TH; unsigned int temp; DS18B20_init(); // 初始化DS18B20 DS18B20_write_byte(0xCC); // 跳过ROM操作 DS18B20_write_byte(0xBE); // 读取温度值 TL = DS18B20_read_byte(); // 读取温度值低字节 TH = DS18B20_read_byte(); // 读取温度值高字节 temp = TH; temp <<= 8; // 将高字节左移8位 temp |= TL; // 将低字节与高字节合并 return temp; // 返回温度值 } void main() { unsigned int temp; while(1) { DS18B20_start(); // 启动温度转换 delay_ms(750); // 延时750毫秒,保证转换完成 temp = DS18B20_read_temp(); // 读取温度值 // 将温度值显示在数码管上 // ... } } ``` 需要注意的是,DS18B20的数据引脚需要使用外部上拉电阻,一般使用4.7kΩ的电阻即可。另外,DS18B20的数据引脚也可以直接连接到单片机的IO口,不需要使用中间件。

ds18b20 51单片机

DS18B20是一款数字温度传感器,可以通过单总线接口与51单片机进行通讯。 使用DS18B20需要注意以下几点: 1. DS18B20的引脚包括VCC、GND和DQ(数据引脚)。其中,VCC接5V电源,GND接地,DQ连接单片机的IO口。 2. DS18B20采用的是单总线通讯协议,因此需要在程序中实现相应的通讯函数。 3. DS18B20的温度数据是以16位二进制补码形式存储的,需要将其转换为实际温度值进行使用。 下面是一个简单的示例代码,用于读取DS18B20的温度数据: ```c #include <reg52.h> sbit DQ = P1^4; // DQ连接单片机的P1.4口 unsigned int temp; // 保存温度数据的变量 void delay(unsigned int t) // 延时函数 { while(t--); } void init_ds18b20() // 初始化DS18B20 { DQ = 1; // 置高电平,准备发送复位脉冲 delay(500); // 延时500us DQ = 0; // 发送复位脉冲 delay(80); // 延时80us DQ = 1; // 释放总线 delay(500); // 等待DS18B20回应 } void write_ds18b20(unsigned char dat) // 向DS18B20写入一个字节 { unsigned char i; for(i=0; i<8; i++) { DQ = 0; // 拉低总线 DQ = dat & 0x01; // 发送数据位 delay(5); // 等待时序 DQ = 1; // 恢复总线 dat >>= 1; // 准备发送下一位数据 } } unsigned char read_ds18b20() // 从DS18B20读取一个字节 { unsigned char i, dat = 0; for(i=0; i<8; i++) { DQ = 0; // 拉低总线 dat >>= 1; // 准备接收数据位 if(DQ) dat |= 0x80; // 如果总线为高电平,接收数据位为1 delay(5); // 等待时序 DQ = 1; // 恢复总线 } return dat; } void get_temp() // 获取温度数据 { init_ds18b20(); // 初始化DS18B20 write_ds18b20(0xcc); // 跳过ROM操作 write_ds18b20(0x44); // 启动温度转换 delay(100); // 等待转换完成 init_ds18b20(); // 再次初始化DS18B20 write_ds18b20(0xcc); // 跳过ROM操作 write_ds18b20(0xbe); // 发送读取温度命令 temp = read_ds18b20(); // 读取温度低字节 temp |= read_ds18b20() << 8; // 读取温度高字节 } void main() { while(1) { get_temp(); // 获取温度数据 temp >>= 4; // 将温度数据右移4位,去掉小数部分 // 进行温度转换,具体公式见DS18B20的数据手册 temp = (temp * 625) / 100; // 将温度数据输出到LED灯 P2 = temp; delay(1000); // 延时1秒 } } ``` 需要注意的是,以上代码仅供参考,实际使用时需要根据具体情况进行修改。同时,DS18B20的通讯协议比较复杂,需要仔细阅读其数据手册并进行实验验证。

相关推荐

最新推荐

recommend-type

12864液晶显示DS18B20检测温度

此外,代码中定义了一些重要的变量,如`temp1`存储设定温度,`temp_L`和`temp_H`存储温度的高低字节,`flag`用于标记DS18B20的检测状态,`num`和`num1`可能是处理液晶显示时的辅助变量。延时函数如`delay()`和`...
recommend-type

分布式电网动态电压恢复器模拟装置设计与实现.doc

本装置采用DC-AC及AC-DC-AC双重结构,前级采用功率因数校正(PFC)电路完成AC-DC变换,改善输入端电网电能质量。后级采用单相全桥逆变加变压器输出的拓扑结构,输出功率50W。整个系统以TI公司的浮点数字信号控制器TMS320F28335为控制电路核心,采用规则采样法和DSP片内ePWM模块功能实现SPWM波,采用DSP片内12位A/D对各模拟信号进行采集检测,简化了系统设计和成本。本装置具有良好的数字显示功能,采用CPLD自行设计驱动的4.3英寸彩色液晶TFT-LCD非常直观地完成了输出信号波形、频谱特性的在线实时显示,以及输入电压、电流、功率,输出电压、电流、功率,效率,频率,相位差,失真度参数的正确显示。本装置具有开机自检、输入电压欠压及输出过流保护,在过流、欠压故障排除后能自动恢复。
recommend-type

【无人机通信】基于matlab Stackelberg算法无人机边缘计算抗干扰信道分配【含Matlab源码 4957期】.mp4

Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

电力电子与电力传动专业《电子技术基础》期末考试试题

"电力电子与电力传动专业《电子技术基础》期末考试题试卷(卷四)" 这份试卷涵盖了电子技术基础中的多个重要知识点,包括运放的特性、放大电路的类型、功率放大器的作用、功放电路的失真问题、复合管的运用以及集成电路LM386的应用等。 1. 运算放大器的理论: - 理想运放(Ideal Op-Amp)具有无限大的开环电压增益(A_od → ∞),这意味着它能够提供非常高的电压放大效果。 - 输入电阻(rid → ∞)表示几乎不消耗输入电流,因此不会影响信号源。 - 输出电阻(rod → 0)意味着运放能提供恒定的电压输出,不随负载变化。 - 共模抑制比(K_CMR → ∞)表示运放能有效地抑制共模信号,增强差模信号的放大。 2. 比例运算放大器: - 闭环电压放大倍数取决于集成运放的参数和外部反馈电阻的比例。 - 当引入负反馈时,放大倍数与运放本身的开环增益和反馈网络电阻有关。 3. 差动输入放大电路: - 其输入和输出电压的关系由差模电压增益决定,公式通常涉及输入电压差分和输出电压的关系。 4. 同相比例运算电路: - 当反馈电阻Rf为0,输入电阻R1趋向无穷大时,电路变成电压跟随器,其电压增益为1。 5. 功率放大器: - 通常位于放大器系统的末级,负责将较小的电信号转换为驱动负载的大电流或大电压信号。 - 主要任务是放大交流信号,并将其转换为功率输出。 6. 双电源互补对称功放(Bipolar Junction Transistor, BJT)和单电源互补对称功放(Single Supply Operational Amplifier, Op-Amp): - 双电源互补对称功放常被称为OTL电路,而单电源对称功放则称为OCL电路。 7. 交越失真及解决方法: - 在功放管之间接入偏置电阻和二极管,提供适当的偏置电流,使功放管在静态时工作在线性区,避免交越失真。 8. 复合管的电流放大系数: - 复合管的电流放大系数约等于两个组成管子的电流放大系数之乘积。 9. 复合管的构建原则: - 确保每个参与复合的管子的电流方向正确。 - 复合管的类型由参与复合的两个管子中的一种类型决定。 10. 复合管的优势与缺点: - 优点是能提高电流放大能力,增加集电极电流的负载能力。 - 缺点是热稳定性较差,可通过在第一个管子的发射极连接电阻来改善。 11. LM386集成电路: - 脚2是反相输入端,脚3是同相输入端。 - 脚1和8之间的外接元件用于调节增益和频率响应。 - 脚7通常是电源接地端。 - 脚5是一个内部电平移位器,用于设置工作电压范围。 - 脚4和6通常连接到电源的正负极。 12. 整流滤波电路: - 直流电压的稳定性受整流二极管的前向电压和滤波电容的充电/放电特性影响。 - 当二极管的前向电压变化或滤波电容的值改变时,输出直流电压会有波动。 这份试卷全面测试了学生对电子技术基础理论的理解,包括放大电路设计、运算放大器应用、功率放大器的工作原理,以及集成电路在实际电路中的运用。学生需要掌握这些概念并能灵活应用。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

VGGNet与其他深度学习模型对比:优缺点全解析,做出明智的模型选择

![VGGNet与其他深度学习模型对比:优缺点全解析,做出明智的模型选择](https://img-blog.csdnimg.cn/a02739db1463453db084046846e0549d.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5Lmd5LmF5ZGA,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. 深度学习模型概述 深度学习模型是一种强大的机器学习算法,它通过模拟人脑中的神经网络结构来学习和处理复杂数据。深度学习模
recommend-type

mysql 索引类型

MySQL中的索引类型主要有以下几种: 1. **B树索引(BTREE)**:这是最常用的索引类型,适用于大多数查询操作。B树索引的数据结构类似于一颗平衡二叉树,支持范围查询和排序。 2. **哈希索引(HASH)**:也称为散列索引,查找速度非常快,但只适用于等值查询(等于某个值),不支持范围查询。 3. **全文索引(FULLTEXT)**:用于全文本搜索,如MATCH AGAINST语句,适合于对文本字段进行复杂的搜索。 4. **空间索引(SPATIAL)**:如R-Tree,专为地理位置数据设计,支持点、线、面等几何形状的操作。 5. **唯一索引(UNIQUE)**:B树
recommend-type

电力电子技术期末考试题:电力客户与服务管理专业

"电力客户与服务管理专业《电力电子技术》期末考试题试卷(卷C)" 这份试卷涵盖了电力电子技术的基础知识,主要涉及放大电路的相关概念和分析方法。以下是试卷中的关键知识点: 1. **交流通路**:在放大器分析中,交流通路是指忽略直流偏置时的电路模型,它是用来分析交流信号通过放大器的路径。在绘制交流通路时,通常将电源电压视为短路,保留交流信号所影响的元件。 2. **放大电路的分析方法**:包括直流通路分析、交流通路分析和瞬时值图解法。直流通路关注的是静态工作点的确定,交流通路关注的是动态信号的传递。 3. **静态工作点稳定性**:当温度变化时,三极管参数会改变,可能导致放大电路静态工作点的漂移。为了稳定工作点,可以采用负反馈电路。 4. **失真类型**:由于三极管的非线性特性,会导致幅度失真,即非线性失真;而放大器对不同频率信号放大倍数的不同则可能导致频率响应失真或相位失真。 5. **通频带**:表示放大器能有效放大的频率范围,通常用下限频率fL和上限频率fH来表示,公式为fH-fL。 6. **多级放大器的分类**:包括输入级、中间级和输出级。输入级负责处理小信号,中间级提供足够的电流驱动能力,输出级则要满足负载的需求。 7. **耦合方式**:多级放大电路间的耦合有直接耦合、阻容耦合和变压器耦合,每种耦合方式有其特定的应用场景。 8. **交流和直流信号放大**:若需要同时放大两者,通常选用直接耦合的方式。 9. **输入和输出电阻**:多级放大电路的输入电阻等于第一级的输入电阻,输出电阻等于最后一级的输出电阻。总电压放大倍数是各级放大倍数的乘积。 10. **放大器的基本组合状态**:包括共基放大、共集放大(又称射极跟随器)和共源放大。共集放大电路的电压放大倍数接近于1,但具有高输入电阻和低输出电阻的特性。 11. **场效应管的工作区域**:场效应管的输出特性曲线有截止区、饱和区和放大区。在放大区,场效应管可以作为放大器件使用。 12. **场效应管的控制机制**:场效应管利用栅极-源极间的电场来控制漏极-源极间的电流,因此被称为电压控制型器件。根据结构和工作原理,场效应管分为结型场效应管和绝缘栅型场效应管(MOSFET)。 13. **场效应管的电极**:包括源极(Source)、栅极(Gate)和漏极(Drain)。 14. **混合放大电路**:场效应管与晶体三极管结合可以构成各种类型的放大电路,如互补对称电路(如BJT的差分对电路)和MOSFET的MOS互补电路等。 这些知识点是电力电子技术中的基础,对于理解和设计电子电路至关重要。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

VGGNet训练技巧大公开:如何提升VGGNet模型性能,解锁图像分类的奥秘

![VGGNet训练技巧大公开:如何提升VGGNet模型性能,解锁图像分类的奥秘](https://img3.gelonghui.com/2e78e-d473e9f6-428a-4cab-9fa9-27eb10a6a522.png) # 1. VGGNet模型简介 VGGNet,全称Visual Geometry Group Network,是一种卷积神经网络(CNN)模型,由牛津大学视觉几何组于2014年提出。VGGNet以其简单、易于实现的网络结构和出色的图像分类性能而闻名。 VGGNet的核心结构由一系列卷积层和池化层组成。卷积层负责提取图像特征,而池化层则用于减少特征图的尺寸。VG