yolov8改进afpn
时间: 2023-10-21 12:02:12 浏览: 205
yolov8模型长方形尺寸onnx部署,可减少一般参数,性能提升一倍
YOLOv8是一种目标检测算法,而AFPN是一种多尺度特征融合网络。通过将YOLOv8与AFPN相结合,可以在目标检测中取得更好的性能。
在YOLOv8中,我们使用了轻量级Darknet作为骨干网络,用于提取特征。然而,由于骨干网络的下采样操作,会导致较低分辨率的特征图,使得网络对小目标的检测效果不佳。AFPN则能够解决这个问题。
首先,YOLOv8会生成多个不同尺度的特征图,而AFPN则会将这些特征图进行融合。具体而言,AFPN会通过上采样操作将低分辨率的特征图扩大到与高分辨率特征图相同的尺寸,然后将两者进行逐元素求和,得到融合后的特征图。这样一方面可以保留高分辨率特征图中的细节信息,另一方面又能够通过低分辨率特征图的上采样操作获得更全局的语义信息。
通过融合后的特征图,YOLOv8可以在不同尺度下进行更准确的目标检测。AFPN的引入使得YOLOv8的性能得到了明显的提升,特别是对于小目标的检测效果有了显著的改进。
综上所述,通过将AFPN集成到YOLOv8中,可以在目标检测任务中获得更好的性能表现,尤其是对于小目标的检测效果有很大的改进。这种改进使得YOLOv8成为目标检测算法中的一种重要选择。
阅读全文