EfficientNet网络代码
时间: 2023-09-20 14:05:59 浏览: 123
EfficientNet.tar.gz
以下是使用 Keras 实现的 EfficientNetB0 网络的代码示例:
```python
from keras.models import Model
from keras.layers import Input, Conv2D, BatchNormalization, Activation, Add, Dropout, GlobalAveragePooling2D, Dense
from keras.utils import plot_model
from keras import backend as K
# 定义 Swish 激活函数
def swish(x):
return K.sigmoid(x) * x
# 定义 Depthwise Convolution 模块
def depthwise_conv_block(inputs, pointwise_conv_filters, alpha=1.0, depth_multiplier=1, strides=(1, 1)):
pointwise_conv_filters = int(pointwise_conv_filters * alpha)
x = inputs
# Depthwise Convolution
x = DepthwiseConv2D((3, 3), padding='same', depth_multiplier=depth_multiplier, strides=strides)(x)
x = BatchNormalization()(x)
x = Activation(swish)(x)
# Pointwise Convolution
x = Conv2D(pointwise_conv_filters, (1, 1), padding='same', strides=(1, 1))(x)
x = BatchNormalization()(x)
x = Activation(swish)(x)
return x
# 定义 Squeeze-and-Excitation 模块
def squeeze_excite_block(inputs, filters, ratio=16):
# Squeeze
se = GlobalAveragePooling2D()(inputs)
se = Dense(filters // ratio, activation='relu')(se)
# Excite
se = Dense(filters, activation='sigmoid')(se)
x = inputs
x = Multiply()([x, se])
return x
# 定义 EfficientNetB0 网络
def EfficientNetB0(input_shape, classes):
inputs = Input(shape=input_shape)
# Stem
x = Conv2D(32, (3, 3), strides=(2, 2), padding='same')(inputs)
x = BatchNormalization()(x)
x = Activation(swish)(x)
# MBConv1
x = depthwise_conv_block(x, 16, alpha=1.0, depth_multiplier=1, strides=(1, 1))
# MBConv6
x = depthwise_conv_block(x, 24, alpha=1.0, depth_multiplier=1, strides=(2, 2))
x = squeeze_excite_block(x, 24)
x = depthwise_conv_block(x, 24, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 24)
x = depthwise_conv_block(x, 24, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 24)
# MBConv6
x = depthwise_conv_block(x, 40, alpha=1.0, depth_multiplier=1, strides=(2, 2))
x = squeeze_excite_block(x, 40)
x = depthwise_conv_block(x, 40, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 40)
x = depthwise_conv_block(x, 40, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 40)
# MBConv6
x = depthwise_conv_block(x, 80, alpha=1.0, depth_multiplier=1, strides=(2, 2))
x = squeeze_excite_block(x, 80)
x = depthwise_conv_block(x, 80, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 80)
x = depthwise_conv_block(x, 80, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 80)
x = depthwise_conv_block(x, 80, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 80)
# MBConv6
x = depthwise_conv_block(x, 112, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 112)
x = depthwise_conv_block(x, 112, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 112)
x = depthwise_conv_block(x, 112, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 112)
x = depthwise_conv_block(x, 112, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 112)
# MBConv6
x = depthwise_conv_block(x, 192, alpha=1.0, depth_multiplier=1, strides=(2, 2))
x = squeeze_excite_block(x, 192)
x = depthwise_conv_block(x, 192, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 192)
x = depthwise_conv_block(x, 192, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 192)
x = depthwise_conv_block(x, 192, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 192)
# MBConv6
x = depthwise_conv_block(x, 320, alpha=1.0, depth_multiplier=1, strides=(1, 1))
x = squeeze_excite_block(x, 320)
# Top
x = Conv2D(1280, (1, 1), padding='same')(x)
x = BatchNormalization()(x)
x = Activation(swish)(x)
# Average Pooling
x = GlobalAveragePooling2D()(x)
# Dropout
x = Dropout(0.2)(x)
# Output
outputs = Dense(classes, activation='softmax')(x)
# 创建模型
model = Model(inputs, outputs)
return model
```
注意,这个代码示例中只实现了 EfficientNetB0 网络的部分层,如果要实现完整的 EfficientNet 网络,需要根据具体的网络结构进行修改。
阅读全文