set_index
时间: 2023-10-08 22:10:55 浏览: 175
set_index() 是 Pandas 数据分析库中的一个函数,它可以将一个或多个列作为索引,重新构建数据框的索引。例如,如果我们有一个名为 df 的数据框,它有两列分别为 "A" 和 "B",我们可以使用以下代码将 "A" 列作为索引:
```
df = df.set_index("A")
```
这将返回一个新的数据框,其中 "A" 列将被用作索引,而 "B" 列将成为数据框中的一个普通列。如果我们想要将多个列作为索引,我们可以传递一个列名列表给 set_index() 函数,例如:
```
df = df.set_index(["A", "B"])
```
这将返回一个新的数据框,其中 "A" 和 "B" 列将被用作多级索引。
相关问题
reset_index和set_index有什么区别
`reset_index()` 和 `set_index()` 是 Pandas 中两个常用的函数,它们用于操作 DataFrame 中的索引。
`reset_index()` 函数将原来的索引列转化为普通的数据列,并重新为 DataFrame 分配一个默认的数字索引。例如,下面代码将第一列作为索引列,然后使用 `reset_index()` 函数将它转化为普通的数据列:
``` python
import pandas as pd
df = pd.read_csv('data.csv', index_col=0)
df.reset_index(inplace=True)
```
`set_index()` 函数则是将一个或多个列设置为新的索引列。例如,下面代码将第一列和第二列作为新的索引列:
``` python
import pandas as pd
df = pd.read_csv('data.csv')
df.set_index(['col1', 'col2'], inplace=True)
```
需要注意的是,两个函数都有一个 `inplace` 参数,如果设置为 `True`,则会直接在原 DataFrame 上进行修改操作,否则返回一个新的 DataFrame。
代码讲解 def matches(g_matches): g_matches.insert(2, 'potential1', g_matches['country1'].map(squad_stats.set_index('nationality_name')['potential'])) g_matches.insert(3, 'potential2', g_matches['country2'].map(squad_stats.set_index('nationality_name')['potential'])) g_matches.insert(4, 'rank1', g_matches['country1'].map(last_team_scores.set_index('team')['rank'])) g_matches.insert(5, 'rank2', g_matches['country2'].map(last_team_scores.set_index('team')['rank'])) pred_set = [] for index, row in g_matches.iterrows(): if row['potential1'] > row['potential2'] and abs(row['potential1'] - row['potential2']) > 2: pred_set.append({'Team1': row['country1'], 'Team2': row['country2']}) elif row['potential2'] > row['potential1'] and abs(row['potential2'] - row['potential1']) > 2: pred_set.append({'Team1': row['country2'], 'Team2': row['country1']}) else: if row['rank1'] > row['rank2']: pred_set.append({'Team1': row['country1'], 'Team2': row['country2']}) else: pred_set.append({'Team1': row['country2'], 'Team2': row['country1']}) pred_set = pd.DataFrame(pred_set) pred_set.insert(2, 'Team1_FIFA_RANK', pred_set['Team1'].map(last_team_scores.set_index('team')['rank'])) pred_set.insert(3, 'Team2_FIFA_RANK', pred_set['Team2'].map(last_team_scores.set_index('team')['rank'])) pred_set.insert(4, 'Team1_Goalkeeper_Score', pred_set['Team1'].map(last_team_scores.set_index('team')['goalkeeper_score'])) pred_set.insert(5, 'Team2_Goalkeeper_Score', pred_set['Team2'].map(last_team_scores.set_index('team')['goalkeeper_score'])) pred_set.insert(6, 'Team1_Defense', pred_set['Team1'].map(last_team_scores.set_index('team')['defense_score'])) pred_set.insert(7, 'Team1_Offense', pred_set['Team1'].map(last_team_scores.set_index('team')['offense_score'])) pred_set.insert(8, 'Team1_Midfield', pred_set['Team1'].map(last_team_scores.set_index('team')['midfield_score'])) pred_set.insert(9, 'Team2_Defense', pred_set['Team2'].map(last_team_scores.set_index('team')['defense_score'])) pred_set.insert(10, 'Team2_Offense', pred_set['Team2'].map(last_team_scores.set_index('team')['offense_score'])) pred_set.insert(11, 'Team2_Midfield', pred_set['Team2'].map(last_team_scores.set_index('team')['midfield_score'])) return pred_set
这是一个函数,它的输入是一个包含两个国家名称的 DataFrame,名为 `g_matches`。函数首先用 `map()` 函数将 `squad_stats` 中的 `potential` 列添加到 `g_matches` 中,作为两支球队的潜力值,分别在第 2 和第 3 列。然后,函数使用 `map()` 函数将 `last_team_scores` 中的 `rank` 列添加到 `g_matches` 中,作为两支球队的排名,分别在第 4 和第 5 列。接下来,函数创建一个空列表 `pred_set`,并遍历 `g_matches` 中的每一行,根据条件将预测结果添加到 `pred_set` 列表中。如果第一支球队的潜力值高于第二支球队并且两者之间的差异大于 2,则将第一支球队预测为获胜方;否则,如果第二支球队的潜力值高于第一支球队并且两者之间的差异大于 2,则将第二支球队预测为获胜方。如果两支球队的潜力值差异不足 2,则将预测结果基于排名进行决定。接下来,函数将 `pred_set` 列表转换为 DataFrame,并使用 `map()` 函数将 `last_team_scores` 中的其他列添加到 DataFrame 中,包括两支球队的 FIFA 排名、门将得分、防守得分、进攻得分和中场得分。最后,函数返回包含预测结果和球队评分的 DataFrame。
阅读全文