驾驶员疲劳检测 yolov5基于tensorflow代码
时间: 2023-07-11 21:09:46 浏览: 146
以下是基于 TensorFlow 的驾驶员疲劳检测的代码示例,使用的是 YOLOv5 模型:
```python
import tensorflow as tf
import cv2
import numpy as np
from yolov5_tf import YOLOv5
# 初始化模型
model = YOLOv5(input_size=640, model='yolov5s', num_classes=2, anchors_path='data/yolov5_anchors.txt')
model.load_weights('yolov5s_weights.tf')
# 加载分类标签
classes = ['open', 'close']
# 循环读取帧
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
if not ret:
break
# 预处理图像
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (640, 640))
img = img.astype(np.float32) / 255.0
img = np.expand_dims(img, axis=0)
# 模型推理
pred = model.predict(img)[0]
pred = tf.clip_by_value(pred, 0, 1)
boxes, scores, classes = model.postprocess(pred, frame.shape[:2][::-1])
# 处理检测结果
for box, score, cls in zip(boxes, scores, classes):
x1, y1, x2, y2 = box
label = f'{classes[int(cls)]} {score:.2f}'
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# 显示结果
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
```
这个代码使用 TensorFlow 框架和 YOLOv5 模型来检测视频帧中的驾驶员疲劳状态。它可以在摄像头输入的实时视频流中运行,并在每个检测到的疲劳状态区域周围绘制一个矩形框。
阅读全文