云模型多个云图合并Python代码

时间: 2023-10-15 15:05:35 浏览: 49
以下是一个简单的用Python实现的云模型多个云图合并的示例代码: ``` python import numpy as np # 加权平均法 def merge_clouds_weighted_average(clouds, weights): merged_cloud = np.zeros_like(clouds[0]) for i, cloud in enumerate(clouds): merged_cloud += cloud * weights[i] return merged_cloud / np.sum(weights) # 相似度比较法 def merge_clouds_similarity(clouds): similarities = np.zeros((len(clouds), len(clouds))) for i in range(len(clouds)): for j in range(i+1, len(clouds)): similarities[i,j] = similarities[j,i] = compute_similarity(clouds[i], clouds[j]) while len(clouds) > 1: i, j = np.unravel_index(np.argmax(similarities), similarities.shape) new_cloud = merge_two_clouds(clouds[i], clouds[j]) clouds.pop(max(i,j)) clouds.pop(min(i,j)) clouds.append(new_cloud) similarities = np.delete(similarities, max(i,j), axis=0) similarities = np.delete(similarities, max(i,j), axis=1) similarities = np.delete(similarities, min(i,j), axis=0) similarities = np.delete(similarities, min(i,j), axis=1) new_similarities = np.zeros((len(clouds), len(clouds))) for i in range(len(clouds)): for j in range(i+1, len(clouds)): new_similarities[i,j] = new_similarities[j,i] = compute_similarity(clouds[i], clouds[j]) similarities = np.vstack((similarities, new_similarities)) similarities = np.hstack((similarities, np.zeros((len(similarities), 1)))) similarities = np.hstack((similarities, np.zeros((len(similarities), 1)).T)) similarities[-len(clouds):, :-len(clouds)] = new_similarities return clouds[0] # 聚类分析法 def merge_clouds_clustering(clouds, k): from sklearn.cluster import AgglomerativeClustering clustering = AgglomerativeClustering(n_clusters=k, affinity='precomputed', linkage='average') similarities = np.zeros((len(clouds), len(clouds))) for i in range(len(clouds)): for j in range(i+1, len(clouds)): similarities[i,j] = similarities[j,i] = compute_similarity(clouds[i], clouds[j]) clustering.fit(similarities) merged_clouds = [] for i in range(k): indices = np.where(clustering.labels_ == i)[0] weights = np.zeros(len(indices)) for j, index in enumerate(indices): weights[j] = np.sum(similarities[index, indices]) / (len(indices) - 1) merged_clouds.append(merge_clouds_weighted_average(clouds[indices], weights)) return merged_clouds # 计算云图相似度 def compute_similarity(cloud1, cloud2): return np.sum(np.minimum(cloud1, cloud2)) # 合并两个云图 def merge_two_clouds(cloud1, cloud2): return np.maximum(cloud1, cloud2) ``` 其中,`clouds`是一个包含多个云图的列表,`weights`是各个云图的权值。`merge_clouds_weighted_average`函数实现了加权平均法,`merge_clouds_similarity`函数实现了相似度比较法,`merge_clouds_clustering`函数实现了聚类分析法。`compute_similarity`函数计算云图相似度,`merge_two_clouds`函数实现了合并两个云图的操作。

相关推荐

最新推荐

recommend-type

Python matplotlib可视化实例解析

主要介绍了Python matplotlib可视化实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
recommend-type

数据可视化之利用Python制作词云图

文本数据中每个词的重要性以字体大小或颜色显示,因此词云可以很好地表明每个单词在特定文本体中被提及的频率(即词频分布),通过使用不同的颜色和大小来表示不同级别的相对显着性。 词云图的应用相当广泛,诸如...
recommend-type

【图像压缩】 GUI矩阵的奇异值分解SVD灰色图像压缩【含Matlab源码 4359期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

node-v0.9.2-x86.msi

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

【尺寸检测】机器视觉图像目标尺寸测量【含Matlab源码 4087期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。