云模型多个云图合并Python代码
时间: 2023-10-15 22:05:35 浏览: 166
云模型代码
3星 · 编辑精心推荐
以下是一个简单的用Python实现的云模型多个云图合并的示例代码:
``` python
import numpy as np
# 加权平均法
def merge_clouds_weighted_average(clouds, weights):
merged_cloud = np.zeros_like(clouds[0])
for i, cloud in enumerate(clouds):
merged_cloud += cloud * weights[i]
return merged_cloud / np.sum(weights)
# 相似度比较法
def merge_clouds_similarity(clouds):
similarities = np.zeros((len(clouds), len(clouds)))
for i in range(len(clouds)):
for j in range(i+1, len(clouds)):
similarities[i,j] = similarities[j,i] = compute_similarity(clouds[i], clouds[j])
while len(clouds) > 1:
i, j = np.unravel_index(np.argmax(similarities), similarities.shape)
new_cloud = merge_two_clouds(clouds[i], clouds[j])
clouds.pop(max(i,j))
clouds.pop(min(i,j))
clouds.append(new_cloud)
similarities = np.delete(similarities, max(i,j), axis=0)
similarities = np.delete(similarities, max(i,j), axis=1)
similarities = np.delete(similarities, min(i,j), axis=0)
similarities = np.delete(similarities, min(i,j), axis=1)
new_similarities = np.zeros((len(clouds), len(clouds)))
for i in range(len(clouds)):
for j in range(i+1, len(clouds)):
new_similarities[i,j] = new_similarities[j,i] = compute_similarity(clouds[i], clouds[j])
similarities = np.vstack((similarities, new_similarities))
similarities = np.hstack((similarities, np.zeros((len(similarities), 1))))
similarities = np.hstack((similarities, np.zeros((len(similarities), 1)).T))
similarities[-len(clouds):, :-len(clouds)] = new_similarities
return clouds[0]
# 聚类分析法
def merge_clouds_clustering(clouds, k):
from sklearn.cluster import AgglomerativeClustering
clustering = AgglomerativeClustering(n_clusters=k, affinity='precomputed', linkage='average')
similarities = np.zeros((len(clouds), len(clouds)))
for i in range(len(clouds)):
for j in range(i+1, len(clouds)):
similarities[i,j] = similarities[j,i] = compute_similarity(clouds[i], clouds[j])
clustering.fit(similarities)
merged_clouds = []
for i in range(k):
indices = np.where(clustering.labels_ == i)[0]
weights = np.zeros(len(indices))
for j, index in enumerate(indices):
weights[j] = np.sum(similarities[index, indices]) / (len(indices) - 1)
merged_clouds.append(merge_clouds_weighted_average(clouds[indices], weights))
return merged_clouds
# 计算云图相似度
def compute_similarity(cloud1, cloud2):
return np.sum(np.minimum(cloud1, cloud2))
# 合并两个云图
def merge_two_clouds(cloud1, cloud2):
return np.maximum(cloud1, cloud2)
```
其中,`clouds`是一个包含多个云图的列表,`weights`是各个云图的权值。`merge_clouds_weighted_average`函数实现了加权平均法,`merge_clouds_similarity`函数实现了相似度比较法,`merge_clouds_clustering`函数实现了聚类分析法。`compute_similarity`函数计算云图相似度,`merge_two_clouds`函数实现了合并两个云图的操作。
阅读全文