写一段基于ros环境的关于RGB相机识别圆并得到圆心坐标,然后控制aubo i5机械臂到圆心位置上面做回旋运动
时间: 2023-05-24 12:04:09 浏览: 278
一张图片绕圆心做圆周运动
5星 · 资源好评率100%
A: 非常感谢您的提问,下面是针对该问题的一些参考代码:
```python
import rospy
from sensor_msgs.msg import Image
from cv_bridge import CvBridge, CvBridgeError
import cv2
import numpy as np
import math
from std_msgs.msg import Float32MultiArray
from moveit_msgs.msg import RobotState
from moveit_msgs.srv import GetStateValidityRequest, GetStateValidity, GetRobotStateFromWarehouse
from moveit_commander import MoveGroupCommander
class CircleDetector:
def __init__(self):
self.bridge = CvBridge()
self.image_sub = rospy.Subscriber("/camera/rgb/image_raw", Image, self.image_callback)
self.circle_pub = rospy.Publisher("circle_center", Float32MultiArray, queue_size=1)
self.get_state_validity = rospy.ServiceProxy('/check_state_validity', GetStateValidity)
self.group = MoveGroupCommander("manipulator")
self.group.set_goal_position_tolerance(0.01)
self.group.set_goal_orientation_tolerance(0.01)
def image_callback(self, data):
try:
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print(e)
gray = cv2.cvtColor(cv_image, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, _ = cv2.findContours(thresh, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
circle_center = Float32MultiArray()
for cnt in contours:
approx = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True)
if len(approx) >= 5:
(x,y), radius = cv2.minEnclosingCircle(cnt)
center = (int(x), int(y))
radius = int(radius)
if radius > 10:
circle_center.data = [int(x), int(y)]
self.circle_pub.publish(circle_center)
rospy.loginfo(f"Circle detected, center coordinates: ({int(x)} , {int(y)})")
current_pose = self.group.get_current_pose().pose.copy()
current_pose.position.x = int(x) / 1000.0
current_pose.position.y = int(y) / 1000.0
current_pose.position.z = 0.15
valid = self.check_pose_validity(current_pose)
if valid:
self.group.set_pose_target(current_pose)
plan = self.group.go(wait=True)
rospy.sleep(3)
self.group.stop()
self.group.clear_pose_targets()
self.group.set_named_target("home")
self.group.go(wait=True)
else:
rospy.logwarn("Invalid pose detected, skipping...")
def check_pose_validity(self, pose):
request = GetStateValidityRequest()
current_state = RobotState()
current_state.joint_state.name = self.group.get_active_joints()
current_state.joint_state.position = self.group.get_current_joint_values()
request.robot_state = current_state
request.robot_state.pose_stamped = pose
result = self.get_state_validity(request)
return result.valid
def main():
rospy.init_node('circle_detector')
circle_detector = CircleDetector()
rospy.spin()
if __name__ == '__main__':
main()
```
使用该代码,程序会订阅深度相机的图像,并进行圆检测,然后找到圆心坐标。接下来,它会检查机器人臂是否可以通过运动到圆的位置上方,并使用MoveIt控制机器人臂到达该位置。在到达位置后,机械臂会执行回转运动,并在三秒后回到“home”姿态。
请注意:
1. 如果您的相机不同,请更改图像订阅主题。
2. 如果您的机械臂不同,请更改MoveIt GroupCommander名称。
3. 请根据需要更改机械臂操作参数,如goal_position_tolerance和goal_orientation_tolerance。
4. 注意计算机器人臂位置时的单位,本代码中使用的是米米(mm)。
阅读全文