stm32f407adc的dma中断采集
时间: 2023-06-05 17:47:24 浏览: 527
STM32F407ADC的DMA中断采集是指通过STM32F407的DMA (Direct Memory Access) 功能和ADC (Analog to Digital Converter) 来实现采样数据的中断获取。DMA能够直接将ADC采样数据传输到内存中,而不需要CPU参与数据传输过程,从而提高系统的采样率和效率。中断机制则可以在ADC采样完成后立即通知系统并处理数据。
相关问题
stm32f407adc多通道dma采集
实现STM32F407的ADC多通道DMA采集需要以下步骤:
1. 配置ADC模块:首先需要配置ADC模块,设置ADC的采样时间、分辨率、转换模式等参数。
2. 配置DMA:开启DMA时钟,并配置DMA通道、数据传输方向、数据长度、传输完成中断等参数。
3. 配置NVIC中断:开启DMA中断,并设置优先级。
4. 启动ADC和DMA:使能ADC和DMA。
以下是一个示例代码,可以参考实现:
```C
#include "stm32f4xx.h"
#define ADC1_DR_ADDRESS ((uint32_t)0x4001204C)
uint16_t adc_value[3];
void ADC_DMA_Init(void)
{
ADC_InitTypeDef ADC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
/* ADC1, DMA2 and GPIOA clock enable */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2 | RCC_AHB1Periph_GPIOA, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
/* Configure ADC1 Channel7,8,9 pins as analog input -------------------------*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* DMA2 Stream0 channel0 configuration ----------------------------------------------*/
DMA_InitStructure.DMA_Channel = DMA_Channel_0;
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)ADC1_DR_ADDRESS;
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)&adc_value;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
DMA_InitStructure.DMA_BufferSize = 3;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;
DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull;
DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMA_Init(DMA2_Stream0, &DMA_InitStructure);
DMA_Cmd(DMA2_Stream0, ENABLE);
/* ADC Common Init **********************************************************/
ADC_CommonInitTypeDef ADC_CommonInitStructure;
ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2;
ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled;
ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;
ADC_CommonInit(&ADC_CommonInitStructure);
/* ADC1 Init ****************************************************************/
ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfConversion = 3;
ADC_Init(ADC1, &ADC_InitStructure);
/* ADC1 regular channel7,8,9 configuration **************************************/
ADC_RegularChannelConfig(ADC1, ADC_Channel_7, 1, ADC_SampleTime_84Cycles);
ADC_RegularChannelConfig(ADC1, ADC_Channel_8, 2, ADC_SampleTime_84Cycles);
ADC_RegularChannelConfig(ADC1, ADC_Channel_9, 3, ADC_SampleTime_84Cycles);
/* Enable DMA request after last transfer (Single-ADC mode) */
ADC_DMARequestAfterLastTransferCmd(ADC1, ENABLE);
/* Enable ADC1 DMA */
ADC_DMACmd(ADC1, ENABLE);
/* Enable ADC1 */
ADC_Cmd(ADC1, ENABLE);
/* Enable DMA Stream Half / Transfer Complete interrupt */
NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream0_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Enable DMA Stream Half / Transfer Complete interrupt */
DMA_ITConfig(DMA2_Stream0, DMA_IT_TC | DMA_IT_HT, ENABLE);
/* Start ADC1 Software Conversion */
ADC_SoftwareStartConv(ADC1);
}
void DMA2_Stream0_IRQHandler(void)
{
if(DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0)) {
DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0);
/* do something with the adc_value here */
}
if(DMA_GetITStatus(DMA2_Stream0, DMA_IT_HTIF0)) {
DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_HTIF0);
/* do something with the adc_value here */
}
}
int main(void)
{
ADC_DMA_Init();
while(1);
}
```
在这个示例中,我们使用了ADC1和DMA2,并采集了ADC1的7、8、9三个通道的数据。DMA2的Stream0被配置为循环模式,传输完成中断和半传输完成中断都被开启。当传输完成中断或半传输完成中断发生时,程序会调用DMA2_Stream0_IRQHandler函数进行处理。你可以根据自己的需求修改这个示例代码。
stm32f407 dma采集adc hal
STM32F407是一款具有DMA功能的微控制器,可以用于采集ADC数据。
首先,我们需要配置ADC和DMA模块。通过HAL库提供的函数,我们可以初始化ADC和DMA模块,并设置相关的参数,例如ADC的采样率、DMA的传输模式等等。
在采集数据之前,我们需要设置ADC通道的引脚和分辨率。可以通过HAL库的函数将相应的引脚设置为ADC输入,并设置好分辨率,以确保精确的数据采集。
接下来,我们需要配置DMA通道。通过HAL库的函数,我们可以选择DMA通道和传输方向(从ADC到内存),设置数据宽度和传输长度等。可以通过DMA的循环模式来实现连续的数据采集。
当配置完毕后,我们可以使用HAL库提供的函数启动DMA传输和ADC采集。DMA会自动将ADC的数据传输到指定的内存区域,从而实现高效的数据采集。
在数据采集过程中,我们可以通过DMA的中断来实现数据的处理和操作。一旦DMA传输完成,会触发相应的中断,我们可以在中断处理函数中对采集到的数据进行处理,例如计算平均值、滤波等等。
最后,在不需要采集数据时,我们可以通过HAL库的函数停止DMA传输和ADC采集,以节省功耗和资源。
总结起来,STM32F407的DMA采集ADC HAL的过程是先配置ADC和DMA模块,然后设置ADC引脚和分辨率,配置DMA通道和传输参数,启动DMA传输和ADC采集,最后通过中断处理函数处理采集到的数据。通过使用DMA来采集ADC数据,可以提高效率并减少CPU的负载。
阅读全文