stm32f407adc的dma中断采集

时间: 2023-06-05 15:47:24 浏览: 377
STM32F407ADC的DMA中断采集是指通过STM32F407的DMA (Direct Memory Access) 功能和ADC (Analog to Digital Converter) 来实现采样数据的中断获取。DMA能够直接将ADC采样数据传输到内存中,而不需要CPU参与数据传输过程,从而提高系统的采样率和效率。中断机制则可以在ADC采样完成后立即通知系统并处理数据。
相关问题

stm32f407adc多通道dma采集

实现STM32F407的ADC多通道DMA采集需要以下步骤: 1. 配置ADC模块:首先需要配置ADC模块,设置ADC的采样时间、分辨率、转换模式等参数。 2. 配置DMA:开启DMA时钟,并配置DMA通道、数据传输方向、数据长度、传输完成中断等参数。 3. 配置NVIC中断:开启DMA中断,并设置优先级。 4. 启动ADC和DMA:使能ADC和DMA。 以下是一个示例代码,可以参考实现: ```C #include "stm32f4xx.h" #define ADC1_DR_ADDRESS ((uint32_t)0x4001204C) uint16_t adc_value[3]; void ADC_DMA_Init(void) { ADC_InitTypeDef ADC_InitStructure; DMA_InitTypeDef DMA_InitStructure; GPIO_InitTypeDef GPIO_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; /* ADC1, DMA2 and GPIOA clock enable */ RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2 | RCC_AHB1Periph_GPIOA, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); /* Configure ADC1 Channel7,8,9 pins as analog input -------------------------*/ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOA, &GPIO_InitStructure); /* DMA2 Stream0 channel0 configuration ----------------------------------------------*/ DMA_InitStructure.DMA_Channel = DMA_Channel_0; DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)ADC1_DR_ADDRESS; DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)&adc_value; DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory; DMA_InitStructure.DMA_BufferSize = 3; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord; DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; DMA_InitStructure.DMA_Priority = DMA_Priority_High; DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull; DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single; DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single; DMA_Init(DMA2_Stream0, &DMA_InitStructure); DMA_Cmd(DMA2_Stream0, ENABLE); /* ADC Common Init **********************************************************/ ADC_CommonInitTypeDef ADC_CommonInitStructure; ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent; ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2; ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled; ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; ADC_CommonInit(&ADC_CommonInitStructure); /* ADC1 Init ****************************************************************/ ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b; ADC_InitStructure.ADC_ScanConvMode = ENABLE; ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfConversion = 3; ADC_Init(ADC1, &ADC_InitStructure); /* ADC1 regular channel7,8,9 configuration **************************************/ ADC_RegularChannelConfig(ADC1, ADC_Channel_7, 1, ADC_SampleTime_84Cycles); ADC_RegularChannelConfig(ADC1, ADC_Channel_8, 2, ADC_SampleTime_84Cycles); ADC_RegularChannelConfig(ADC1, ADC_Channel_9, 3, ADC_SampleTime_84Cycles); /* Enable DMA request after last transfer (Single-ADC mode) */ ADC_DMARequestAfterLastTransferCmd(ADC1, ENABLE); /* Enable ADC1 DMA */ ADC_DMACmd(ADC1, ENABLE); /* Enable ADC1 */ ADC_Cmd(ADC1, ENABLE); /* Enable DMA Stream Half / Transfer Complete interrupt */ NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); /* Enable DMA Stream Half / Transfer Complete interrupt */ DMA_ITConfig(DMA2_Stream0, DMA_IT_TC | DMA_IT_HT, ENABLE); /* Start ADC1 Software Conversion */ ADC_SoftwareStartConv(ADC1); } void DMA2_Stream0_IRQHandler(void) { if(DMA_GetITStatus(DMA2_Stream0, DMA_IT_TCIF0)) { DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_TCIF0); /* do something with the adc_value here */ } if(DMA_GetITStatus(DMA2_Stream0, DMA_IT_HTIF0)) { DMA_ClearITPendingBit(DMA2_Stream0, DMA_IT_HTIF0); /* do something with the adc_value here */ } } int main(void) { ADC_DMA_Init(); while(1); } ``` 在这个示例中,我们使用了ADC1和DMA2,并采集了ADC1的7、8、9三个通道的数据。DMA2的Stream0被配置为循环模式,传输完成中断和半传输完成中断都被开启。当传输完成中断或半传输完成中断发生时,程序会调用DMA2_Stream0_IRQHandler函数进行处理。你可以根据自己的需求修改这个示例代码。

stm32f407 dma采集adc hal

STM32F407是一款具有DMA功能的微控制器,可以用于采集ADC数据。 首先,我们需要配置ADC和DMA模块。通过HAL库提供的函数,我们可以初始化ADC和DMA模块,并设置相关的参数,例如ADC的采样率、DMA的传输模式等等。 在采集数据之前,我们需要设置ADC通道的引脚和分辨率。可以通过HAL库的函数将相应的引脚设置为ADC输入,并设置好分辨率,以确保精确的数据采集。 接下来,我们需要配置DMA通道。通过HAL库的函数,我们可以选择DMA通道和传输方向(从ADC到内存),设置数据宽度和传输长度等。可以通过DMA的循环模式来实现连续的数据采集。 当配置完毕后,我们可以使用HAL库提供的函数启动DMA传输和ADC采集。DMA会自动将ADC的数据传输到指定的内存区域,从而实现高效的数据采集。 在数据采集过程中,我们可以通过DMA的中断来实现数据的处理和操作。一旦DMA传输完成,会触发相应的中断,我们可以在中断处理函数中对采集到的数据进行处理,例如计算平均值、滤波等等。 最后,在不需要采集数据时,我们可以通过HAL库的函数停止DMA传输和ADC采集,以节省功耗和资源。 总结起来,STM32F407的DMA采集ADC HAL的过程是先配置ADC和DMA模块,然后设置ADC引脚和分辨率,配置DMA通道和传输参数,启动DMA传输和ADC采集,最后通过中断处理函数处理采集到的数据。通过使用DMA来采集ADC数据,可以提高效率并减少CPU的负载。

相关推荐

最新推荐

recommend-type

STM32 DMA中断模式下ADC多通道数据采集+均值滤波

本程序实现STM32 DMA中断模式下ADC多通道数据采集,并经过简单的均值滤波,亲测可用。 若有错误之处,希望读者指出,大家共同学习,一起进步!
recommend-type

STM32定时器触发ADC +DMA

Stm32的ADC有DMA功能这都毋庸置疑,也是我们用的最多的!然而,如果我们要对一个信号(比如脉搏信号)进行定时采样(也就是隔一段时间,比如说2ms),有三种方法: 1、使用定时器中断每隔一定时间进行ADC转换,这样...
recommend-type

STM32 ADC DMA 使用心得 1

这次的主要目标 (一)ADC以中断方式单次采集一路电压。 (二)ADC以中断方式单次采集六路电压,使用DMA.
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这