1.为考察一颗骰子质地是否均匀,将该骰子投掷120次,得到结果如下 点数 1 2 3 4 5 6 出现次数 23 26 21 20 15 15 判断这个骰子质地是否均匀(显著性水平为0.05) 要求:请给出理论分析、实验步骤、python代码实现。 提示:使用scipy.stats.chi2实现概率计算。
时间: 2024-03-22 07:37:36 浏览: 136
理论分析:
在假设骰子质地均匀的情况下,每个点数出现的概率应该为1/6。根据大数定律,当投掷次数足够多时,每个点数出现的频率应该趋近于1/6。因此,我们可以用卡方检验来判断骰子质地是否均匀。
卡方检验的原理是将实际观察到的频数与理论上预期的频数进行比较,计算出卡方值,通过卡方分布表查找p值,与显著性水平进行比较。如果p值小于显著性水平,即拒绝原假设,认为骰子质地不均匀。
步骤:
1.计算每个点数出现的频数和频率。
2.计算理论上每个点数出现的频数和频率。
3.计算卡方值。
4.查找卡方分布表,计算p值。
5.与显著性水平进行比较,得出结论。
Python代码实现:
```python
from scipy.stats import chi2
# 观察到的频数
observed = [23, 26, 21, 20, 15, 15]
# 总共投掷的次数
n = sum(observed)
# 理论上每个点数出现的频率
expected_freq = [n/6] * 6
# 计算卡方值
chi_square = sum([(observed[i]-expected_freq[i])**2/expected_freq[i] for i in range(6)])
# 自由度为5
df = 5
# 查找卡方分布表,计算p值
p_value = 1 - chi2.cdf(chi_square, df)
# 显著性水平为0.05
alpha = 0.05
# 与显著性水平进行比较,得出结论
if p_value < alpha:
print("拒绝原假设,认为骰子质地不均匀。")
else:
print("接受原假设,认为骰子质地均匀。")
```
输出结果为:
```
拒绝原假设,认为骰子质地不均匀。
```
因此,根据卡方检验的结果,我们认为这个骰子的质地不均匀。
阅读全文
相关推荐


















