生成一个apriori算法的Python源代码
时间: 2023-06-23 21:09:06 浏览: 175
Apriori算法 源代码
5星 · 资源好评率100%
下面是一个简单的Apriori算法的Python实现:
```python
def apriori(transactions, min_support):
"""
:param transactions: a list of transactions. Each transaction is a list of items.
:param min_support: minimum support threshold
:return: a dictionary of itemsets and their corresponding supports
"""
itemsets = {}
for transaction in transactions:
for item in transaction:
if item not in itemsets:
itemsets[item] = 1
else:
itemsets[item] += 1
# filter itemsets below minimum support threshold
itemsets = {k: v for k, v in itemsets.items() if v >= min_support}
freq_items = list(itemsets.keys())
freq_items.sort()
# generate candidate itemsets
k = 2
while freq_items:
candidate_itemsets = set()
for i in range(len(freq_items)):
for j in range(i + 1, len(freq_items)):
itemset1 = set(freq_items[i])
itemset2 = set(freq_items[j])
if len(itemset1.union(itemset2)) == k:
candidate_itemsets.add(tuple(sorted(itemset1.union(itemset2))))
# count candidate itemsets in transactions
itemsets = {}
for transaction in transactions:
for candidate_itemset in candidate_itemsets:
if set(candidate_itemset).issubset(set(transaction)):
if candidate_itemset not in itemsets:
itemsets[candidate_itemset] = 1
else:
itemsets[candidate_itemset] += 1
# filter itemsets below minimum support threshold
itemsets = {k: v for k, v in itemsets.items() if v >= min_support}
# add frequent itemsets to the list
freq_items = list(itemsets.keys())
freq_items.sort()
k += 1
return itemsets
```
该算法接受一个交易列表和最小支持阈值作为输入,并返回一个包含频繁项集及其支持度计数的字典。
阅读全文