生成一个红黑树代码C++

时间: 2023-09-03 17:26:15 浏览: 82
### 回答1: 这是一段简单的红黑树代码C:#include<stdio.h> struct node { int key; struct node *left, *right; int color; }; // A Red-Black tree node structure struct node *newNode(int key) { struct node *temp = (struct node *)malloc(sizeof(struct node)); temp->key = key; temp->left = temp->right = NULL; temp->color = 1; // 1 for red, 0 for black return temp; } // A utility function to right rotate subtree rooted with y // See the diagram given above. struct node *rightRotate(struct node *y) { struct node *x = y->left; struct node *T2 = x->right; // Perform rotation x->right = y; y->left = T2; // Return new root return x; } // A utility function to left rotate subtree rooted with x // See the diagram given above. struct node *leftRotate(struct node *x) { struct node *y = x->right; struct node *T2 = y->left; // Perform rotation y->left = x; x->right = T2; // Return new root return y; } // This function fixes the Red-Black tree void fixViolation(struct node *temp) { struct node *parent_temp = NULL; struct node *grand_parent_temp = NULL; while ((temp != root) && (temp->color != 0) && (temp->parent->color == 1)) { parent_temp = temp->parent; grand_parent_temp = temp->parent->parent; /* Case : A Parent of temp is left child of Grand-parent of temp */ if (parent_temp == grand_parent_temp->left) { struct node *uncle_temp = grand_parent_temp->right; /* Case : 1 The uncle of temp is also red Only Recoloring required */ if (uncle_temp != NULL && uncle_temp->color == 1) { grand_parent_temp->color = 1; parent_temp->color = 0; uncle_temp->color = 0; temp = grand_parent_temp; } else { /* Case : 2 temp is right child of its parent Left-rotation required */ if (temp == parent_temp->right) { temp = parent_temp; leftRotate(temp); } /* Case : 3 temp is left child of its parent Right-rotation required */ rightRotate(grand_parent_temp); swap(parent_temp->color, grand_parent_temp->color); temp = parent_temp; } } /* Case : B Parent of temp is right child of Grand-parent of temp */ else { struct node *uncle_temp = grand_parent_temp->left; /* Case : 1 The uncle of temp is also red Only Recoloring required */ if ((uncle_temp != NULL) && (uncle_temp->color == 1)) { grand_parent_temp->color = 1; parent_temp->color = 0; uncle_temp->color = 0; temp = grand_parent_temp; } else { /* Case : 2 temp is left child of its parent Right-rotation required */ if (temp == parent_temp->left) { temp = parent_temp; rightRotate(temp); } /* Case : 3 temp is right child of its parent Left-rotation required */ leftRotate(grand_parent_temp); swap(parent_temp->color, grand_parent_temp->color); temp = parent_temp; } } } root->color = 0; } ### 回答2: 红黑树(Red-Black Tree)是一种自平衡的二叉搜索树,它的每个节点都具有一个颜色属性,可以是红色或黑色。红黑树具有以下几个性质: 1. 每个节点要么是红色,要么是黑色。 2. 根节点是黑色。 3. 叶子节点(NIL节点,空节点)是黑色。 4. 如果一个节点是红色,则它的两个子节点都是黑色(不能出现连续的红色节点)。 5. 对于每个节点,从该节点到其子孙节点的所有路径上包含相同数目的黑色节点。 以下是一个简单实现红黑树的C代码: ```c #include <stdio.h> #include <stdlib.h> enum Color {RED, BLACK}; // 红黑树节点结构定义 typedef struct node { int data; enum Color color; struct node *left, *right, *parent; } Node; // 红黑树结构定义 typedef struct rbtree { Node *root; Node *nil; } RBTree; // 左旋操作 void leftRotate(RBTree *tree, Node *x) { Node *y = x->right; x->right = y->left; if (y->left != tree->nil) { y->left->parent = x; } y->parent = x->parent; if (x->parent == tree->nil) { tree->root = y; } else if (x == x->parent->left) { x->parent->left = y; } else { x->parent->right = y; } y->left = x; x->parent = y; } // 右旋操作 void rightRotate(RBTree *tree, Node *y) { Node *x = y->left; y->left = x->right; if (x->right != tree->nil) { x->right->parent = y; } x->parent = y->parent; if (y->parent == tree->nil) { tree->root = x; } else if (y == y->parent->left) { y->parent->left = x; } else { y->parent->right = x; } x->right = y; y->parent = x; } // 插入操作的修复 void insertFixup(RBTree *tree, Node *z) { while (z->parent->color == RED) { if (z->parent == z->parent->parent->left) { Node *y = z->parent->parent->right; if (y->color == RED) { z->parent->color = BLACK; y->color = BLACK; z->parent->parent->color = RED; z = z->parent->parent; } else { if (z == z->parent->right) { z = z->parent; leftRotate(tree, z); } z->parent->color = BLACK; z->parent->parent->color = RED; rightRotate(tree, z->parent->parent); } } else { Node *y = z->parent->parent->left; if (y->color == RED) { z->parent->color = BLACK; y->color = BLACK; z->parent->parent->color = RED; z = z->parent->parent; } else { if (z == z->parent->left) { z = z->parent; rightRotate(tree, z); } z->parent->color = BLACK; z->parent->parent->color = RED; leftRotate(tree, z->parent->parent); } } } tree->root->color = BLACK; } // 插入操作 void insert(RBTree *tree, int data) { Node *z = (Node *) malloc(sizeof(Node)); z->data = data; z->color = RED; z->left = tree->nil; z->right = tree->nil; Node *y = tree->nil; Node *x = tree->root; while (x != tree->nil) { y = x; if (z->data < x->data) { x = x->left; } else { x = x->right; } } z->parent = y; if (y == tree->nil) { tree->root = z; } else if (z->data < y->data) { y->left = z; } else { y->right = z; } insertFixup(tree, z); } // 中序遍历 void inorderTraversal(RBTree *tree, Node *root) { if (root != tree->nil) { inorderTraversal(tree, root->left); printf("%d ", root->data); inorderTraversal(tree, root->right); } } int main() { RBTree tree; Node nilNode; tree.nil = &nilNode; tree.nil->color = BLACK; tree.root = tree.nil; // 插入节点 insert(&tree, 5); insert(&tree, 2); insert(&tree, 7); insert(&tree, 1); insert(&tree, 3); insert(&tree, 6); insert(&tree, 8); // 中序遍历输出 inorderTraversal(&tree, tree.root); printf("\n"); return 0; } ``` 以上代码实现了红黑树的插入操作,并通过中序遍历的方式输出了插入后的红黑树节点数据。可以根据需要修改插入数据和遍历方式来进行测试。 ### 回答3: 红黑树是一种自平衡的二叉搜索树,其在插入和删除操作后通过一系列旋转和重新着色操作来保持平衡。 下面是一个简单的红黑树的 C 代码实现: ```c #include <stdio.h> #include <stdlib.h> // 定义红黑树的节点结构 typedef struct Node { int data; // 节点存储的数据 enum { RED, BLACK } color; // 节点的颜色 struct Node *parent; // 指向父节点的指针 struct Node *left; // 指向左子节点的指针 struct Node *right; // 指向右子节点的指针 } Node; // 全局变量,表示红黑树的根节点 Node *root = NULL; // 左旋操作 void leftRotate(Node *x) { Node *y = x->right; x->right = y->left; if (y->left != NULL) { y->left->parent = x; } y->parent = x->parent; if (x->parent == NULL) { root = y; } else if (x == x->parent->left) { x->parent->left = y; } else { x->parent->right = y; } y->left = x; x->parent = y; } // 右旋操作 void rightRotate(Node *x) { Node *y = x->left; x->left = y->right; if (y->right != NULL) { y->right->parent = x; } y->parent = x->parent; if (x->parent == NULL) { root = y; } else if (x == x->parent->left) { x->parent->left = y; } else { x->parent->right = y; } y->right = x; x->parent = y; } // 插入操作 void insert(int data) { Node *node = (Node *)malloc(sizeof(Node)); node->data = data; node->left = NULL; node->right = NULL; node->color = RED; Node *y = NULL; Node *x = root; while (x != NULL) { y = x; if (data < x->data) { x = x->left; } else { x = x->right; } } node->parent = y; if (y == NULL) { root = node; } else if (data < y->data) { y->left = node; } else { y->right = node; } insertFixup(node); } // 插入修正操作 void insertFixup(Node *z) { while (z->parent != NULL && z->parent->color == RED) { if (z->parent == z->parent->parent->left) { Node *y = z->parent->parent->right; if (y != NULL && y->color == RED) { z->parent->color = BLACK; y->color = BLACK; z->parent->parent->color = RED; z = z->parent->parent; } else { if (z == z->parent->right) { z = z->parent; leftRotate(z); } z->parent->color = BLACK; z->parent->parent->color = RED; rightRotate(z->parent->parent); } } else { Node *y = z->parent->parent->left; if (y != NULL && y->color == RED) { z->parent->color = BLACK; y->color = BLACK; z->parent->parent->color = RED; z = z->parent->parent; } else { if (z == z->parent->left) { z = z->parent; rightRotate(z); } z->parent->color = BLACK; z->parent->parent->color = RED; leftRotate(z->parent->parent); } } } root->color = BLACK; } // 中序遍历输出红黑树 void inorderTraversal(Node *node) { if (node != NULL) { inorderTraversal(node->left); printf("%d\n", node->data); inorderTraversal(node->right); } } int main() { insert(5); insert(3); insert(8); insert(1); insert(4); insert(6); insert(9); printf("红黑树中序遍历结果:\n"); inorderTraversal(root); return 0; } ``` 该代码实现了红黑树的基本操作,包括左旋、右旋、插入和插入修正等。每个节点包含数据、颜色和指向父节点、左子节点和右子节点的指针。插入操作使用了插入修正来保持红黑树的平衡性。 通过在 `main` 函数中插入一些数据,即可得到生成的红黑树,并通过中序遍历输出树中节点的数据,以验证树结构是否正确。

相关推荐

最新推荐

recommend-type

2024年欧洲化学电镀市场主要企业市场占有率及排名.docx

2024年欧洲化学电镀市场主要企业市场占有率及排名.docx
recommend-type

计算机本科生毕业论文1111

老人服务系统
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到