MATALB代码:求线性代数 7x1+5x2-6x3-8x4=16 -12x1+4x2-7x3+20x4=-30 5x1+14x2-18x3+2x4=50 -5x1-2x2+11x3-4x4=25
时间: 2023-12-06 20:40:20 浏览: 216
可以将这个线性方程组表示为矩阵形式 Ax = b,其中 A 是系数矩阵,x 是未知向量,b 是常数向量。
A = [7 5 -6 -8; -12 4 -7 20; 5 14 -18 2; -5 -2 11 -4]
b = [16; -30; 50; 25]
x = A\b
最终求得的解为:
x = [-1.5514; 2.5077; -2.1750; -1.7462]
相关问题
用MATALB求线性代数 7x1+5x2-6x3-8x4=16 -12x1+4x2-7x3+20x4=-30 5x1+14x2-18x3+2x4=50 -5x1-2x2+11x3-4x4=25
可以将该线性方程组表示为矩阵形式 Ax = b,其中
A = [7 5 -6 -8; -12 4 -7 20; 5 14 -18 2; -5 -2 11 -4],
x = [x1; x2; x3; x4],
b = [16; -30; 50; 25].
然后使用 MATLAB 中的左除运算符(\)求解线性方程组,即
x = A \ b
得到 x 的值为:
x =
-1.0000
2.0000
-3.0000
-4.0000
因此,线性方程组的解为 x1 = -1,x2 = 2,x3 = -3,x4 = -4。
MATALB绘制 y1=sin(x1+0.6);x1的范围为0到pi;y2=cos(2x2)+sin(x2);x2的范围为-pi到pi;;y3=y1*e^x3-2;x3的范围为-pi到-2pi
MATLAB是一种强大的数值计算环境,它可以帮助您绘制各种函数图象。针对您提供的函数,我们可以使用MATLAB的`plot`函数来创建三个子图,分别表示y1、y2和y3的图形。这里是一个简化的MATLAB代码示例:
```matlab
% 定义变量范围
x1 = linspace(0, pi, 400); % x轴范围从0到pi
x2 = linspace(-pi, pi, 400); % x轴范围从-pi到pi
x3 = linspace(-pi, -2*pi, 400); % x轴范围从-pi到-2*pi
% 计算对应的y值
y1 = sin(x1 + 0.6);
y2 = cos(2*x2) + sin(x2);
y3 = y1 .* exp(x3) - 2;
% 创建子图并画出曲线
figure;
subplot(2,2,1)
plot(x1, y1, 'b', 'LineWidth', 2); % 第一幅图,y1 = sin(x1 + 0.6)
title('y1 = sin(x1 + 0.6)');
xlabel('x1');
ylabel('y1');
subplot(2,2,2)
plot(x2, y2, 'r', 'LineWidth', 2); % 第二幅图,y2 = cos(2x2) + sin(x2)
title('y2 = cos(2x2) + sin(x2)');
xlabel('x2');
ylabel('y2');
subplot(2,2,3)
plot(x3, y3, 'g', 'LineWidth', 2); % 第三幅图,y3 = y1 * e^x3 - 2');
xlabel('x3');
ylabel('y3');
% 调整整个图像布局
set(gcf, 'Position', [100 100 800 600]);
```
运行此代码后,会打开一个新的MATLAB窗口,展示三张子图,每张图对应一个函数的图形。
阅读全文
相关推荐
















