我使用BiSeNetV2进行11分类的语义分割任务,代码中应该加入哪些评价指标,应该如何加入呢,给出全部的具体代码
时间: 2024-05-01 08:17:16 浏览: 125
常见的语义分割评价指标包括:pixel accuracy、mean accuracy、mean IoU、frequency weighted IoU等。下面是使用BiSeNetV2进行11分类语义分割任务时,加入评价指标的代码示例:
```python
import torch
import numpy as np
from tqdm import tqdm
def evaluate(model, dataloader, device):
'''
model:语义分割模型
dataloader:验证集数据加载器
device:设备,如'cuda'或'cpu'
'''
model.eval()
total_pixel_acc = 0.
total_mean_acc = 0.
total_mean_iou = 0.
total_freq_iou = 0.
with torch.no_grad():
for inputs, labels in tqdm(dataloader):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
preds = preds.detach().cpu().numpy()
labels = labels.detach().cpu().numpy()
total_pixel_acc += pixel_accuracy(preds, labels)
total_mean_acc += mean_accuracy(preds, labels)
total_mean_iou += mean_iou(preds, labels)
total_freq_iou += frequency_weighted_iou(preds, labels)
num_samples = len(dataloader.dataset)
avg_pixel_acc = total_pixel_acc / num_samples
avg_mean_acc = total_mean_acc / num_samples
avg_mean_iou = total_mean_iou / num_samples
avg_freq_iou = total_freq_iou / num_samples
print('Pixel accuracy: {:.4f}'.format(avg_pixel_acc))
print('Mean accuracy: {:.4f}'.format(avg_mean_acc))
print('Mean IoU: {:.4f}'.format(avg_mean_iou))
print('Frequency weighted IoU: {:.4f}'.format(avg_freq_iou))
def pixel_accuracy(preds, labels):
return np.mean(preds == labels)
def mean_accuracy(preds, labels):
acc_per_class = np.zeros(11)
for i in range(11):
tp = np.sum((preds == i) & (labels == i))
fp = np.sum((preds == i) & (labels != i))
fn = np.sum((preds != i) & (labels == i))
acc_per_class[i] = tp / (tp + fp + fn)
return np.mean(acc_per_class)
def mean_iou(preds, labels):
iou_per_class = np.zeros(11)
for i in range(11):
tp = np.sum((preds == i) & (labels == i))
fp = np.sum((preds == i) & (labels != i))
fn = np.sum((preds != i) & (labels == i))
iou_per_class[i] = tp / (tp + fp + fn)
return np.mean(iou_per_class)
def frequency_weighted_iou(preds, labels):
freq_per_class = np.zeros(11)
for i in range(11):
freq_per_class[i] = np.sum(labels == i)
freq_per_class = freq_per_class / np.sum(freq_per_class)
iou_per_class = np.zeros(11)
for i in range(11):
tp = np.sum((preds == i) & (labels == i))
fp = np.sum((preds == i) & (labels != i))
fn = np.sum((preds != i) & (labels == i))
iou_per_class[i] = tp / (tp + fp + fn)
return np.sum(freq_per_class * iou_per_class)
```
在训练过程中,可以在每个epoch结束后调用evaluate函数,计算验证集上的评价指标:
```python
for epoch in range(num_epochs):
# 训练代码
evaluate(model, val_dataloader, device)
```
阅读全文