k-means聚类算法的原理
时间: 2023-10-01 16:07:17 浏览: 119
k-means聚类算法是一种基于距离的聚类算法,其原理如下:
1. 随机选择k个中心点,将数据集中的每个样本点分配到最近的中心点所在的簇中。
2. 对于每个簇,重新计算该簇的中心点。
3. 重复步骤1和步骤2,直到样本点的分配结果不再改变,或者达到预设的最大迭代次数。
在k-means聚类算法中,我们需要选择合适的初始中心点,常用的方法有随机选择、均匀采样等。此外,k-means聚类算法还有一些改进的方法,如k-means++、Mini Batch k-means等,可以提高算法的效率和精度。
k-means聚类算法的优点是简单、快速、易于实现和理解,适用于处理大规模的数据集。缺点是需要提前指定簇数k,对噪声和异常值敏感,结果可能受初始随机中心点的影响。
阅读全文