在Android Studio中编写代码使用SIFT算法实现增强现实
时间: 2023-11-10 12:51:42 浏览: 191
要在Android Studio中使用SIFT算法实现增强现实,需要进行以下步骤:
1. 在build.gradle文件中添加OpenCV库的依赖,可以在OpenCV官网下载OpenCV for Android SDK并引入到项目中。
2. 在AndroidManifest.xml文件中添加摄像头和写入外部存储的权限。
3. 在MainActivity中创建一个OpenCVLoader回调函数,以确保OpenCV库已成功加载。
4. 在CameraPreview类中使用Camera2 API获取摄像头预览数据,将预览数据转换为OpenCV中的Mat对象。
5. 使用SIFT算法在Mat对象中检测关键点和描述符。
6. 将检测到的关键点和描述符与预先存储的目标图像的关键点和描述符进行匹配。
7. 根据匹配结果在相机预览中绘制目标图像的边框或其他图形。
以下是一个简单的示例代码:
```java
public class CameraPreview extends SurfaceView implements SurfaceHolder.Callback, Camera.PreviewCallback {
private static final String TAG = "CameraPreview";
private Camera mCamera;
private SurfaceHolder mHolder;
private Mat mGray;
private MatOfKeyPoint mKeypoints;
private Mat mDescriptors;
private DescriptorMatcher mMatcher;
private MatOfDMatch mMatches;
public CameraPreview(Context context, Camera camera) {
super(context);
mCamera = camera;
mHolder = getHolder();
mHolder.addCallback(this);
mHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
mGray = new Mat();
mKeypoints = new MatOfKeyPoint();
mDescriptors = new Mat();
mMatcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMING);
mMatches = new MatOfDMatch();
}
@Override
public void surfaceCreated(SurfaceHolder holder) {
try {
mCamera.setPreviewDisplay(holder);
mCamera.setPreviewCallback(this);
} catch (IOException e) {
Log.e(TAG, "Error setting camera preview", e);
}
}
@Override
public void surfaceChanged(SurfaceHolder holder, int format, int width, int height) {
if (mHolder.getSurface() == null) {
return;
}
try {
mCamera.stopPreview();
} catch (Exception e) {
Log.e(TAG, "Error stopping camera preview", e);
}
try {
Camera.Parameters parameters = mCamera.getParameters();
parameters.setPreviewSize(width, height);
mCamera.setParameters(parameters);
mCamera.setPreviewDisplay(mHolder);
mCamera.setPreviewCallback(this);
mCamera.startPreview();
} catch (Exception e) {
Log.e(TAG, "Error starting camera preview", e);
}
}
@Override
public void surfaceDestroyed(SurfaceHolder holder) {
mCamera.stopPreview();
mCamera.setPreviewCallback(null);
mCamera.release();
mCamera = null;
}
@Override
public void onPreviewFrame(byte[] data, Camera camera) {
Camera.Size size = camera.getParameters().getPreviewSize();
int width = size.width;
int height = size.height;
Mat previewMat = new Mat(height + height / 2, width, CvType.CV_8UC1);
previewMat.put(0, 0, data);
Imgproc.cvtColor(previewMat, mGray, Imgproc.COLOR_YUV2GRAY_NV21);
Features2d.drawKeypoints(mGray, mKeypoints, mGray);
if (!mDescriptors.empty()) {
mMatcher.match(mDescriptors, mDescriptors, mMatches);
List<DMatch> matchesList = mMatches.toList();
if (matchesList.size() > 10) {
ArrayList<Point> srcPoints = new ArrayList<>();
ArrayList<Point> dstPoints = new ArrayList<>();
for (DMatch match : matchesList) {
srcPoints.add(mKeypoints.toList().get(match.queryIdx).pt);
dstPoints.add(mKeypoints.toList().get(match.trainIdx).pt);
}
MatOfPoint2f src = new MatOfPoint2f(srcPoints.toArray(new Point[srcPoints.size()]));
MatOfPoint2f dst = new MatOfPoint2f(dstPoints.toArray(new Point[dstPoints.size()]));
Mat homography = Calib3d.findHomography(src, dst, Calib3d.RANSAC, 5);
if (!homography.empty()) {
MatOfPoint2f cornerPoints = new MatOfPoint2f(new Point(0, 0), new Point(0, height - 1), new Point(width - 1, height - 1), new Point(width - 1, 0));
MatOfPoint2f transformedCornerPoints = new MatOfPoint2f();
Core.perspectiveTransform(cornerPoints, transformedCornerPoints, homography);
Point[] points = transformedCornerPoints.toArray();
Canvas canvas = mHolder.lockCanvas();
canvas.drawColor(0, PorterDuff.Mode.CLEAR);
canvas.drawLines(new float[]{(float) points[0].x, (float) points[0].y, (float) points[1].x, (float) points[1].y, (float) points[1].x, (float) points[1].y, (float) points[2].x, (float) points[2].y, (float) points[2].x, (float) points[2].y, (float) points[3].x, (float) points[3].y, (float) points[3].x, (float) points[3].y, (float) points[0].x, (float) points[0].y}, new Paint());
mHolder.unlockCanvasAndPost(canvas);
}
}
}
}
public void setTargetImage(Mat targetImage) {
FeatureDetector detector = FeatureDetector.create(FeatureDetector.SIFT);
detector.detect(targetImage, mKeypoints);
DescriptorExtractor extractor = DescriptorExtractor.create(DescriptorExtractor.SIFT);
extractor.compute(targetImage, mKeypoints, mDescriptors);
}
}
```
在MainActivity中,可以使用以下代码初始化CameraPreview并设置目标图像:
```java
public class MainActivity extends AppCompatActivity {
private static final String TAG = "MainActivity";
private CameraPreview mPreview;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
Camera camera = Camera.open();
mPreview = new CameraPreview(this, camera);
FrameLayout previewLayout = findViewById(R.id.camera_preview);
previewLayout.addView(mPreview);
Mat targetImage = Imgcodecs.imread(Environment.getExternalStorageDirectory().getPath() + "/target.jpg", Imgcodecs.IMREAD_GRAYSCALE);
mPreview.setTargetImage(targetImage);
}
@Override
protected void onResume() {
super.onResume();
if (OpenCVLoader.initDebug()) {
Log.d(TAG, "OpenCV loaded successfully");
mPreview.setVisibility(View.VISIBLE);
} else {
Log.d(TAG, "OpenCV not loaded");
}
}
}
```
注意,此示例代码仅用于演示SIFT算法在Android中的应用,实际使用中还需要进行优化和改进。
阅读全文