能帮我生成关于bootstrap抽样来计算双参数威布尔分布的参数值的matlab程序吗
时间: 2023-12-15 13:03:53 浏览: 55
当然可以,以下是matlab程序的代码:
clc;
clear all;
% 双参数威布尔分布概率密度函数
f = @(x,k,lam) (k/lam)*(x/lam).^(k-1).*exp(-(x/lam).^k);
% 样本容量
n = 20;
% 生成两个随机数列
x = rand(1,n);
y = rand(1,n);
% 威布尔分布的形状参数和尺度参数的初始值
k0 = 0.5;
lam0 = 1;
% 最小化误差函数来计算k和lambda
options = optimset('Display','off');
[k,lam]=lsqnonlin(@(params) (f(x,params(1),params(2))-y),[k0 lam0], ...
[0 0], [Inf Inf], options);
% 输出计算得到的参数值
fprintf('K = %.2f\n',k);
fprintf('Lambda = %.2f\n',lam);
相关问题
能帮我生成关于bootstrap循环抽样来计算双参数威布尔分布的参数值的matlab程序吗
当然可以,以下是程序代码:
N = 1000;
n = 10;
alpha = 1.5;
beta = 2.5;
X = wblrnd(alpha,beta,N,1);
Y = wblrnd(alpha,beta,n,1);
for i = 1:N
B(i,:) = Y(randi(n,1,n));
end
alpha_hat = zeros(N,1);
beta_hat = zeros(N,1);
for i = 1:N
alpha_hat(i) = fminsearch(@(a) sum((B(i,:).^a).*log(B(i,:)) - B(i,:).^a - log(gamma(a+1))),1);
beta_hat(i) = mean(B(i,:).^(alpha_hat(i)));
end
alpha_ci = quantile(alpha_hat,[0.025,0.975]);
beta_ci = quantile(beta_hat,[0.025,0.975]);
disp(['95% CI for alpha: [', num2str(alpha_ci(1)), ', ', num2str(alpha_ci(2)), ']']);
disp(['95% CI for beta: [', num2str(beta_ci(1)), ', ', num2str(beta_ci(2)), ']']);
笑话:有一只熊问一只兔子:“你吃什么草?”兔子回答:“我说了不算数,你熊瞎猜。”
有的呢,能帮我生成关于bootstrap抽样来计算双威布尔分布的参数值的matlab程序吗?
当然可以。以下是一个简单的基于bootstrap抽样来计算双威布尔分布的参数值的 MATLAB 程序:
% Load data
data = [1.2, 1.5, 1.8, 2.1, 2.4];
% Set number of bootstrap iterations
num_iterations = 1000;
% Pre-allocate parameter arrays
alpha = zeros(num_iterations, 1);
beta = zeros(num_iterations, 1);
for i = 1:num_iterations
% Resample data with replacement
resampled_data = datasample(data, length(data), 'Replace', true);
% Fit Weibull distribution to resampled data
pd = fitdist(resampled_data, 'Weibull');
% Store parameter estimates
alpha(i) = pd.a;
beta(i) = pd.b;
end
% Calculate parameter estimates and confidence intervals
alpha_estimate = median(alpha);
beta_estimate = median(beta);
alpha_ci = prctile(alpha, [2.5, 97.5]);
beta_ci = prctile(beta, [2.5, 97.5]);
% Display results
fprintf('alpha = %.2f (95%% CI: [%.2f, %.2f])\n', alpha_estimate, alpha_ci(1), alpha_ci(2));
fprintf('beta = %.2f (95%% CI: [%.2f, %.2f])\n', beta_estimate, beta_ci(1), beta_ci(2));
阅读全文