contours = sorted(contours, key=cv2.contourArea, reverse=True)
时间: 2024-05-23 18:16:15 浏览: 139
这行代码是将检测到的轮廓按照其面积大小进行排序,面积大的排在前面,面积小的排在后面。其中,参数key指定了按照哪个属性进行排序,这里使用了cv2.contourArea函数来计算轮廓的面积;参数reverse指定了是否按照降序排序,这里设为True表示按照降序排序。排序后,可以通过contours[0]来获取面积最大的轮廓。
相关问题
import cv2 import numpy as np # 读取相机拍摄的图像 image = cv2.imread('1.jpg') # 将图像转换为HSV颜色空间 hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # 定义红色瓶盖的HSV颜色范围 lower_red = np.array([0, 50, 50]) upper_red = np.array([10, 255, 255]) # 根据颜色范围提取红色瓶盖的区域 mask = cv2.inRange(hsv, lower_red, upper_red) #cv2.imshow('Mask', mask) # 进行形态学操作,去除噪声 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) # 检测红色瓶盖的轮廓 contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) # 对轮廓进行筛选和排序,选择两个最大的轮廓 contours = sorted(contours, key=cv2.contourArea, reverse=True)[:2]请完善上述代码。显示结果
完善代码如下:
```python
import cv2
import numpy as np
# 读取相机拍摄的图像
image = cv2.imread('1.jpg')
# 将图像转换为HSV颜色空间
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# 定义红色瓶盖的HSV颜色范围
lower_red = np.array([0, 50, 50])
upper_red = np.array([10, 255, 255])
# 根据颜色范围提取红色瓶盖的区域
mask = cv2.inRange(hsv, lower_red, upper_red)
# 进行形态学操作,去除噪声
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
# 检测红色瓶盖的轮廓
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# 对轮廓进行筛选和排序,选择两个最大的轮廓
contours = sorted(contours, key=cv2.contourArea, reverse=True)[:2]
# 绘制轮廓并显示结果
cv2.drawContours(image, contours, -1, (0, 0, 255), 3)
cv2.imshow('Result', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
运行代码后,会将原图中提取出的红色瓶盖区域用红色轮廓框出来,并显示在窗口中。
优化这段代码import cv2 import imutils import numpy as np img = cv2.imread('D:\pycharm\PycharmProjects\pythonProject\p1\p1.jpg', cv2.IMREAD_COLOR) img = cv2.resize(img, (600, 400)) cv2.imshow('Origin image', img) img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) img_gray = cv2.bilateralFilter(img_gray, 13, 15, 15) img_edged = cv2.Canny(img_gray, 30, 200) cv2.imshow('edged image', img_edged) img_contours = cv2.findContours(img_edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img_contours = imutils.grab_contours(img_contours) img_contours = sorted(img_contours, key=cv2.contourArea, reverse=True)[:10] screenCnt = None for c in img_contours: peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.018 * peri, True) if len(approx) == 4: screenCnt = approx break if screenCnt is None: detected = 0 print("No contour detected") else: detected = 1 if detected == 1: cv2.drawContours(img, [screenCnt], -1, (0, 0, 255), 3) mask = np.zeros(img_gray.shape, np.uint8) new_image = cv2.drawContours(mask, [screenCnt], 0, 255, -1, ) cv2.imshow('mask_image', new_image) new_image = cv2.bitwise_and(img, img, mask=mask) (x, y) = np.where(mask == 255) (topx, topy) = (np.min(x), np.min(y)) (bottomx, bottomy) = (np.max(x), np.max(y)) cropped = img_gray[topx:bottomx + 1, topy:bottomy + 1] cropped = cv2.resize(cropped, (400, 200)) cv2.imshow('Cropped', cropped) cv2.waitKey(0) cv2.destroyAllWindows()
这段代码主要是对一张图片进行边缘检测,并找出图片中的一个矩形区域进行裁剪。下面是对代码的一些优化建议:
1. 将代码拆分成多个函数,增加代码的可读性和可维护性。
2. 将文件路径字符串改为使用原始字符串(raw string),以避免转义字符带来的问题。
3. 考虑使用命令行参数或配置文件来指定输入文件路径和其他参数,以增加代码的灵活性。
4. 添加错误处理机制,例如检查文件是否存在,处理可能出现的异常情况。
5. 使用`with`语句来管理资源,例如`cv2.VideoCapture`和`cv2.imshow`,以确保资源的正确释放。
6. 使用`argparse`模块来解析命令行参数,以方便指定不同的参数和选项。
7. 使用更具描述性的变量名,以增加代码的可读性。
8. 添加注释来解释代码的功能和逻辑。
9. 考虑使用适当的异常处理机制,例如在无法找到矩形区域时抛出异常或返回错误码。
以上是对代码的一些优化建议,你可以根据实际需求进行调整。
阅读全文