if args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume) args.start_epoch = checkpoint['epoch'] best_acc = checkpoint['best_acc'] recorder = checkpoint['recorder'] best_acc = best_acc.to() model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(args.resume)) cudnn.benchmark = True
时间: 2023-06-10 15:03:23 浏览: 304
这是一个 Python 的代码段,它包含了一个条件语句和一些操作。如果 `args.resume` 是真值(即非空或非零),那么它会尝试加载一个文件,读取其中保存的模型参数和优化器状态。如果文件存在,它会输出一条信息说明已经成功加载了检查点;如果文件不存在,它会输出另一条信息说明未能找到检查点。最后一行 `cudnn.benchmark = True` 可能是为了让 CUDA 的深度神经网络库提高性能。
相关问题
逐句翻译代码def load_trained_modules(model: torch.nn.Module, args: None): enc_model_path = args.enc_init enc_modules = args.enc_init_mods main_state_dict = model.state_dict() logging.warning("model(s) found for pre-initialization") if os.path.isfile(enc_model_path): logging.info('Checkpoint: loading from checkpoint %s for CPU' % enc_model_path) model_state_dict = torch.load(enc_model_path, map_location='cpu') modules = filter_modules(model_state_dict, enc_modules) partial_state_dict = OrderedDict() for key, value in model_state_dict.items(): if any(key.startswith(m) for m in modules): partial_state_dict[key] = value main_state_dict.update(partial_state_dict) else: logging.warning("model was not found : %s", enc_model_path)
定义了一个名为`load_trained_modules`的函数,它有两个参数:`model`和`args`。
`enc_model_path = args.enc_init`将`args`中的`enc_init`属性赋值给变量`enc_model_path`。
`enc_modules = args.enc_init_mods`将`args`中的`enc_init_mods`属性赋值给变量`enc_modules`。
`main_state_dict = model.state_dict()`将当前模型的状态字典赋值给变量`main_state_dict`。
`logging.warning("model(s) found for pre-initialization")`会记录一条警告信息,表示已找到用于预初始化的模型。
`if os.path.isfile(enc_model_path):`如果`enc_model_path`指定的文件存在,则执行接下来的代码块。
`logging.info('Checkpoint: loading from checkpoint %s for CPU' % enc_model_path)`会记录一条信息,表示正在从指定路径的文件中加载模型。
`model_state_dict = torch.load(enc_model_path, map_location='cpu')`将指定路径的模型加载到`model_state_dict`变量中,并指定将其加载到CPU上。
`modules = filter_modules(model_state_dict, enc_modules)`将`model_state_dict`中的模块过滤为仅包括需要加载的模块,并将其存储在`modules`变量中。
`partial_state_dict = OrderedDict()`创建一个有序字典`partial_state_dict`,用于存储部分状态字典。
`for key, value in model_state_dict.items():`迭代`model_state_dict`中的每个元素。
`if any(key.startswith(m) for m in modules):`如果当前元素的键以任何一个需要加载的模块的名称开头,则执行接下来的代码块。
`partial_state_dict[key] = value`将当前元素的键和值存储在`partial_state_dict`中。
`main_state_dict.update(partial_state_dict)`将`partial_state_dict`中的模块参数复制到当前模型的对应模块中。
`else:`如果指定路径的文件不存在,则记录一条警告信息,表示找不到预训练的模型。
create LoRA network. base dim (rank): 64, alpha: 32 neuron dropout: p=None, rank dropout: p=None, module dropout: p=None create LoRA for Text Encoder: 72 modules. create LoRA for U-Net: 192 modules. enable LoRA for text encoder enable LoRA for U-Net Traceback (most recent call last): File "D:\lora_lian\sd-scripts\train_network.py", line 873, in <module> train(args) File "D:\lora_lian\sd-scripts\train_network.py", line 242, in train info = network.load_weights(args.network_weights) File "D:\lora_lian\sd-scripts\networks\lora.py", line 884, in load_weights info = self.load_state_dict(weights_sd, False) File "D:\lora_lian\python\lib\site-packages\torch\nn\modules\module.py", line 2041, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for LoRANetwork: size mismatch for lora_unet_mid_block_attentions_0_proj_out.lora_up.weight: copying a param with shape torch.Size([1280, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([1280, 64, 1, 1]). Traceback (most recent call last): File "D:\lora_lian\python\lib\runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "D:\lora_lian\python\lib\runpy.py", line 86, in _run_code exec(code, run_globals) File "D:\lora_lian\python\lib\site-packages\accelerate\commands\launch.py", line 1114, in <module> main() File "D:\lora_lian\python\lib\site-packages\accelerate\commands\launch.py", line 1110, in main launch_command(args) File "D:\lora_lian\python\lib\site-packages\accelerate\commands\launch.py", line 1104, in launch_command simple_launcher(args) File "D:\lora_lian\python\lib\site-packages\accelerate\commands\launch.py", line 567, in simple_launcher raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd) subprocess.CalledProcessError: Command '['D:\\lora_lian\\python\\python.exe', './sd-scripts/train_network.py', '--config_file', 'D:\\lora_lian\\toml\\autosave\\20230709-112914.toml']' returned non-zero exit status 1. Training failed / 训练失败
根据错误消息,训练失败的原因是模型加载权重时发生了大小不匹配的错误。具体来说,`lora_unet_mid_block_attentions_0_proj_out.lora_up.weight` 的形状在当前模型中为 `torch.Size([1280, 64, 1, 1])`,但从检查点加载的权重形状为 `torch.Size([1280, 128, 1, 1])`,导致了大小不匹配的错误。
要解决这个问题,你可以尝试以下几个步骤:
1. 检查训练脚本中是否指定了正确的模型配置和权重文件。确保使用的权重文件与当前模型兼容,并且没有发生错误或损坏。
2. 确保使用相同版本的训练脚本和权重文件。不同版本之间的模型结构可能会有所不同,导致加载权重时发生大小不匹配的错误。
3. 如果你有其他可用的权重文件,可以尝试加载它们,看看是否能解决问题。有时候,使用不同的预训练权重可以解决加载错误的问题。
4. 如果以上步骤都没有解决问题,你可能需要检查训练脚本和模型代码中的网络结构定义,确保它们一致。可能存在某个部分定义的网络结构与加载的权重文件不匹配的情况。
如果问题仍然存在,你可以尝试向开发者或相关社区寻求帮助。提供更多详细的信息,如完整的错误消息、使用的软件版本等,有助于其他人更好地帮助你解决问题。
阅读全文