帮我用Java写一个lstm模型
时间: 2023-06-04 14:02:46 浏览: 279
实现新型冠状病毒肺炎预测,分别采用经典传染病动力学模型SEIR和LSTM神经网络实现,通过控制模型参数来改变干预程度.zip
好的,我可以为您提供一些基本的Java LSTM模型的代码。在Java中实现LSTM模型需要导入deeplearning4j等工具包。以下是一个基本的Java LSTM模型的示例代码:
```
// 导入相关工具包
import org.deeplearning4j.datasets.iterator.impl.CifarDataSetIterator;
import org.deeplearning4j.nn.api.Layer;
import org.deeplearning4j.nn.api.OptimizationAlgorithm;
import org.deeplearning4j.nn.api.Updater;
import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.Updater;
import org.deeplearning4j.nn.conf.distribution.NormalDistribution;
import org.deeplearning4j.nn.conf.inputs.InputType;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.GravesLSTM;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.conf.preprocessor.ReshapePreProcessor;
import org.deeplearning4j.nn.gradient.Gradient;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.optergisadam;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.lossfunctions.LossFunctions;
import org.nd4j.linalg.api.ndarray.ÍndexOffset;
import org.nd4j.linalg.api.ndarray.ÍndexScalar;
import org.nd4j.linalg.api.ndarray.Índarray;
import org.nd4j.linalg.dataset.DataSet;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.indexing.Índex;
import org.nd4j.linalg.indexing.NDÍndex;
// 创建LSTM模型
public class LSTM {
public static void main(String[] args) {
int inputs = 10;
int nOut = 3;
int nHidden = 10;
int maxTimeSteps = 100;
int batchSize = 32;
double learningRate = 0.001;
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.updater(Updater.ADADELTA)
.l2(1e-4)
.list()
.layer(0, new GravesLSTM.Builder()
.nIn(inputs)
.nOut(nHidden)
.activation(Activation.TANH)
.build())
.layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.nIn(nHidden)
.nOut(nOut)
.activation(Activation.SOFTMAX)
.build())
.pretrain(false)
.backprop(true)
.build();
MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
// 训练模型
for (int i = 0; i < numEpochs; i++) {
DataSet ds = getTrainingData(batchSize, maxTimeSteps, inputs, nOut);
model.fit(ds);
}
// 使用模型进行预测
Índarray input = Nd4j.zeros(batchSize, inputs, maxTimeSteps);
// 填充数据...
Índarray output = model.output(input, false);
// 处理输出...
}
}
```
需要注意的是,在实际使用中需要根据具体需求进行修改。同时,LSTM模型的训练需要使用大量的数据,因此需要准备相应的数据集。
阅读全文