如果分了训练集和测试集 tfidf怎么转成向量
时间: 2023-05-11 16:07:26 浏览: 54
可以使用splice()方法来删除数组中的某一项,例如:
var arr = [1, 2, 3, 4, 5];
arr.splice(2, 1); // 删除第三项
console.log(arr); // [1, 2, 4, 5]
其中,第一个参数是要删除的项的索引,第二个参数是要删除的项的数量。
相关问题
报错ValueError: np.nan is an invalid document, expected byte or unicode string. 怎么修改import pandas as pd from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # 读取电影评论数据集 data = pd.read_csv(r'D:\shujukexue\review_data.csv', encoding='gbk') x = v.fit_transform(df['eview'].apply(lambda x: np.str_(x))) # 分割数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(data['review'], data['sentiment'], test_size=0.2, random_state=42) # 创建CountVectorizer对象进行词频统计和向量化 count_vectorizer = CountVectorizer() X_train_count = count_vectorizer.fit_transform(X_train) X_test_count = count_vectorizer.transform(X_test) # 创建TfidfVectorizer对象进行TF-IDF计算和向量化 tfidf_vectorizer = TfidfVectorizer() X_train_tfidf = tfidf_vectorizer.fit_transform(X_train) X_test_tfidf = tfidf_vectorizer.transform(X_test) # 创建逻辑回归分类器并在CountVectorizer上进行训练和预测 classifier_count = LogisticRegression() classifier_count.fit(X_train_count, y_train) y_pred_count = classifier_count.predict(X_test_count) accuracy_count = accuracy_score(y_test, y_pred_count) print("Accuracy using CountVectorizer:", accuracy_count) # 创建逻辑回归分类器并在TfidfVectorizer上进行训练和预测 classifier_tfidf = LogisticRegression() classifier_tfidf.fit(X_train_tfidf, y_train) y_pred_tfidf = classifier_tfidf.predict(X_test_tfidf) accuracy_tfidf = accuracy_score(y_test, y_pred_tfidf) print("Accuracy using TfidfVectorizer:", accuracy_tfidf)
在代码中,变量名应该是 'data' 而不是 'df',所以在使用 CountVectorizer 进行向量化的时候,应该使用 'data' 而不是 'df',修改代码如下所示:
```
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
# 读取电影评论数据集
data = pd.read_csv(r'D:\shujukexue\review_data.csv', encoding='gbk')
# 分割数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data['review'], data['sentiment'], test_size=0.2, random_state=42)
# 创建CountVectorizer对象进行词频统计和向量化
count_vectorizer = CountVectorizer()
X_train_count = count_vectorizer.fit_transform(X_train)
X_test_count = count_vectorizer.transform(X_test)
# 创建TfidfVectorizer对象进行TF-IDF计算和向量化
tfidf_vectorizer = TfidfVectorizer()
X_train_tfidf = tfidf_vectorizer.fit_transform(X_train)
X_test_tfidf = tfidf_vectorizer.transform(X_test)
# 创建逻辑回归分类器并在CountVectorizer上进行训练和预测
classifier_count = LogisticRegression()
classifier_count.fit(X_train_count, y_train)
y_pred_count = classifier_count.predict(X_test_count)
accuracy_count = accuracy_score(y_test, y_pred_count)
print("Accuracy using CountVectorizer:", accuracy_count)
# 创建逻辑回归分类器并在TfidfVectorizer上进行训练和预测
classifier_tfidf = LogisticRegression()
classifier_tfidf.fit(X_train_tfidf, y_train)
y_pred_tfidf = classifier_tfidf.predict(X_test_tfidf)
accuracy_tfidf = accuracy_score(y_test, y_pred_tfidf)
print("Accuracy using TfidfVectorizer:", accuracy_tfidf)
```
#TFIDF from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer import pickle # tfidf向量保存 # tfidf = TfidfVectorizer() tfidftransformer_path = './tfidftransformer.pkl' tfidf = pickle.load(open(tfidftransformer_path,"rb")) x_train_df = tfidf.fit_transform(x_train) x_train_df = tfidf.transform(x_train) # tfidf向量保存 # tfidftransformer_path = './tfidftransformer.pkl' # with open(tfidftransformer_path, 'wb') as fw: # pickle.dump(tfidf, fw) # 先前已执行过一次 x_test_df = tfidf.transform(x_test)
这段代码是关于使用 sklearn 库中的 CountVectorizer 和 TfidfVectorizer 进行文本特征提取的过程。其中,使用 pickle 库对 tfidf 变量进行保存和加载,这样可以避免每次执行程序时都需要重新计算 tfidf。通过调用 fit_transform() 和 transform() 方法,将训练数据集和测试数据集转换成 tfidf 特征向量。这些特征向量可以作为机器学习算法的输入。
阅读全文