np.linalg.inv报错
时间: 2023-07-11 22:00:43 浏览: 160
np.linalg.inv函数是用来计算矩阵的逆矩阵的。如果该函数报错,可能是以下原因之一:
1. 输入的矩阵不是方阵,即行数和列数不相等。
2. 输入的矩阵是奇异矩阵,即行列式为0。这种情况下矩阵没有逆矩阵。
3. 输入的矩阵存在除以0的情况,比如矩阵中出现了0元素。
你可以检查一下输入的矩阵是否满足上述条件,以确定报错原因。
相关问题
import sympy from sympy import diff from sympy import hessian import numpy as np import pandas as pd def f(x1,x2): return 2*x1**2+x2**2 def f1(x1,x2): x=diff(f(x1,x2),x1) return x def f2(x1,x2): y=diff(f(x1,x2),x2) return y def niudun(x1,x2,e): x3=np.array([x1,x2]) x1,x2=sympy.symbols('x1 x2') k=1 grad=np.array([f1(x1,x2),f2(x1,x2)]) heisai=hessian(f(x1,x2),(x1,x2)) heisai=np.array(heisai,dtype='float') niheisai=np.linalg.inv(heisai) d=-1*np.dot(niheisai,grad) fan=np.linalg.norm(np.array(d.astype(float)),ord=2) while abs(fan)>e: x4=np.array(x3)+np.array(d) k+=1 x3=x4 x1=x3[0] x2=x3[1] grad=np.array([f1(x1,x2),f2(x1,x2)]) heisai=hessian(f(x1,x2),(x1,x2)) heisai=np.array(heisai,dtype='float') niheisai=np.linalg.inv(heisai) d=-1*np.dot(np.array(niheisai),grad) d=pd.DataFrame(d,dtype=np.float16) fan=np.linalg.norm(np.array(d.astype(float)),ord=2) return ("运行次数为:"+k+','+"极值点为:"+x4) x1,x2 = map(float,input("请输入初点:").split(' ')) e= eval(input("请输入精度:")) print(niudun(x1,x2,e))
这段代码实现了牛顿法求解二元函数的最优解,其中 `f` 是目标函数,`f1` 和 `f2` 分别是目标函数关于 $x_1$ 和 $x_2$ 的偏导数,`niudun` 函数使用牛顿法求解最优解。
具体来说,`niudun` 函数的输入参数包括初值点 `(x1, x2)` 和精度 `e`,输出结果包括运行次数和极值点。函数中定义了符号变量 `x1` 和 `x2`,计算梯度向量和 Hessian 矩阵时使用这两个符号变量,而不是具体的数值,这样可以方便地求出梯度向量和 Hessian 矩阵。函数中使用了 `sympy` 库中的 `diff` 函数和 `hessian` 函数来计算目标函数的偏导数和 Hessian 矩阵。
在函数中使用了循环来迭代求解最优解。每次迭代的步骤包括计算梯度向量和 Hessian 矩阵,求解 Hessian 矩阵的逆矩阵,计算下降方向,计算下降方向的模长,更新当前点的位置。循环的终止条件是下降方向的模长小于精度 `e`。
这段代码中有一处错误,即在返回结果时,将运行次数 `k` 直接转换为字符串类型会报错,需要使用 `str(k)` 将其转换为字符串类型。同时,还需要在 `print` 函数中加上括号。另外,最后的返回结果中应该是字符串类型,因此需要将数字和字符串拼接起来。修改后的代码如下:
```python
import sympy
from sympy import diff, hessian
import numpy as np
import pandas as pd
def f(x1, x2):
return 2 * x1**2 + x2**2
def f1(x1, x2):
x = diff(f(x1, x2), x1)
return x
def f2(x1, x2):
y = diff(f(x1, x2), x2)
return y
def niudun(x1, x2, e):
x3 = np.array([x1, x2])
x1, x2 = sympy.symbols('x1 x2')
k = 1
grad = np.array([f1(x1, x2), f2(x1, x2)])
heisai = hessian(f(x1, x2), (x1, x2))
heisai = np.array(heisai, dtype='float')
niheisai = np.linalg.inv(heisai)
d = -1 * np.dot(niheisai, grad)
fan = np.linalg.norm(np.array(d.astype(float)), ord=2)
while abs(fan) > e:
x4 = np.array(x3) + np.array(d)
k += 1
x3 = x4
x1 = x3[0]
x2 = x3[1]
grad = np.array([f1(x1, x2), f2(x1, x2)])
heisai = hessian(f(x1, x2), (x1, x2))
heisai = np.array(heisai, dtype='float')
niheisai = np.linalg.inv(heisai)
d = -1 * np.dot(np.array(niheisai), grad)
d = pd.DataFrame(d, dtype=np.float16)
fan = np.linalg.norm(np.array(d.astype(float)), ord=2)
return "运行次数为:" + str(k) + ',' + "极值点为:" + str(x4)
x1, x2 = map(float, input("请输入初点:").split(' '))
e = eval(input("请输入精度:"))
print(niudun(x1, x2, e))
```
dt = 1.0 # 采样时间 A = np.array([[1, dt, 0.5*dt*dt], [0, 1, dt], [0, 0, 1]]) # 状态转移矩阵 H = np.array([1, 0, 0]).reshape(1, 3) # 观测矩阵 Q = np.array([[0.05, 0.05, 0.0], [0.05, 0.1, 0.01], [0.0, 0.01, 0.01]]) # 过程噪声协方差矩阵 R = np.array([0.5]).reshape(1, 1) # 观测噪声协方差矩阵 P = np.eye(3) # 状态协方差矩阵 # 定义卡尔曼滤波函数 def kalman_filter(z): x_hat = np.zeros((3, 1)) # 初始状态向量 for i in range(len(z)): # 预测 x_hat_minus = np.dot(A, x_hat) P_minus = np.dot(np.dot(A, P), A.T) + Q # 更新 K = np.dot(np.dot(P_minus, H.T), np.linalg.inv(np.dot(np.dot(H, P_minus), H.T) + R)) x_hat = x_hat_minus + np.dot(K, (z[i] - np.dot(H, x_hat_minus))) P = np.dot((np.eye(3) - np.dot(K, H)), P_minus) return x_hat # 对每个方向的时序信号进行卡尔曼滤波 x_filt = kalman_filter(x)报错File "G:\project2\KSVD.py", line 36, in <module> x_filt = kalman_filter(x) File "G:\project2\KSVD.py", line 26, in kalman_filter P_minus = np.dot(np.dot(A, P), A.T) + Q UnboundLocalError: local variable 'P' referenced before assignment
这个错误是因为在函数内部使用了变量P,但没有将其定义为全局变量或者传递给函数。解决方法是在函数内部将P定义为全局变量,或者将其作为函数的参数传递进来。例如:
```python
def kalman_filter(z, P):
x_hat = np.zeros((3, 1)) # 初始状态向量
for i in range(len(z)):
# 预测
x_hat_minus = np.dot(A, x_hat)
P_minus = np.dot(np.dot(A, P), A.T) + Q
# 更新
K = np.dot(np.dot(P_minus, H.T), np.linalg.inv(np.dot(np.dot(H, P_minus), H.T) + R))
x_hat = x_hat_minus + np.dot(K, (z[i] - np.dot(H, x_hat_minus)))
P = np.dot((np.eye(3) - np.dot(K, H)), P_minus)
return x_hat, P
P = np.eye(3) # 初始状态协方差矩阵
x_filt, P = kalman_filter(x, P)
```
阅读全文