DHT11怎么与stm32串口通信

时间: 2023-07-24 21:22:48 浏览: 136
DHT11是一种数字温湿度传感器,通常情况下它不需要与STM32进行串口通信。DHT11传感器的数据是通过单总线(OneWire)协议进行传输的,因此只需要将DHT11的数据线连接到STM32的GPIO口,然后通过编程读取GPIO口的电平变化即可获取DHT11传感器的数据。 下面是连接DHT11传感器与STM32的步骤: 1. 将DHT11的VCC引脚连接到STM32的3.3V电源,将GND引脚连接到STM32的地(GND)。 2. 将DHT11的数据线连接到STM32的一个GPIO口,可以选择任意一个GPIO口,但需要在程序中对其进行配置。 3. 在STM32中编写程序,通过GPIO口读取DHT11传感器的数据。可以使用STM32的输入输出库函数,例如GPIO_ReadInputDataBit()函数,来读取GPIO口的电平变化,并解析DHT11传感器的数据。 需要注意的是,在读取DHT11传感器的数据时,需要按照DHT11协议的规定进行操作。具体来说,需要先向DHT11发送起始信号,然后等待DHT11的响应,最后读取DHT11传输的40位数据并进行解析。DHT11传感器的协议细节可以参考其数据手册。
相关问题

DHT11与stm32f103c8t6引脚串口

DHT11是一种数字温湿度传感器,它与STM32F103C8T6的连接方式可以使用单片机的GPIO口直接连接DHT11的数据引脚,并且可以通过串口输出数据。 以下是连接步骤: 1.将DHT11的VCC引脚连接到STM32F103C8T6的5V引脚。 2.将DHT11的GND引脚连接到STM32F103C8T6的GND引脚。 3.将DHT11的数据引脚连接到STM32F103C8T6的任意一个GPIO口,例如PA0。 4.在单片机程序中,使能对应的GPIO口,并使用相应的库函数读取DHT11的数据。读取过程中,需要注意DHT11的数据通信协议,具体可以参考DHT11的数据手册。 5.通过串口将读取到的温湿度数据输出到PC端,以方便用户查看。 下面是一个简单的示例程序,可供参考: ```c #include "stm32f10x.h" #include "stdio.h" void GPIO_Configuration(void); void USART_Configuration(void); void Delay_us(uint32_t us); void DHT11_Start(void); uint8_t DHT11_Read_Byte(void); uint8_t DHT11_Read_Data(uint8_t *temp,uint8_t *humi); int main(void) { uint8_t temp,humi; char str[100]; GPIO_Configuration(); USART_Configuration(); while (1) { if (DHT11_Read_Data(&temp,&humi)) { sprintf(str,"Temperature is %d'C, Humidity is %d%%\r\n",temp,humi); USART_SendString(USART1,str); } Delay_us(2000000); } } void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_Init(GPIOA, &GPIO_InitStructure); } void USART_Configuration(void) { USART_InitTypeDef USART_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure); USART_InitStructure.USART_BaudRate = 115200; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Tx; USART_Init(USART1, &USART_InitStructure); USART_Cmd(USART1, ENABLE); } void Delay_us(uint32_t us) { uint32_t i; for (i = 0; i < us*8; i++); } void DHT11_Start(void) { GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_SetBits(GPIOA,GPIO_Pin_0); Delay_us(1000); GPIO_ResetBits(GPIOA,GPIO_Pin_0); Delay_us(18000); GPIO_SetBits(GPIOA,GPIO_Pin_0); Delay_us(20); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); } uint8_t DHT11_Read_Byte(void) { uint8_t i,dat; for (i = 0; i < 8; i++) { while(GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0) == RESET); Delay_us(30); if (GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0) == SET) { dat|=0x01<<(7-i); while(GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0) == SET); } else { dat&=~(0x01<<(7-i)); } } return dat; } uint8_t DHT11_Read_Data(uint8_t *temp,uint8_t *humi) { uint8_t buf[5],i; DHT11_Start(); if (GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0) == RESET) { while(GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0) == RESET); while(GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0) == SET); for (i = 0; i < 5; i++) { buf[i] = DHT11_Read_Byte(); } if ((buf[0]+buf[1]+buf[2]+buf[3]) == buf[4]) { *humi = buf[0]; *temp = buf[2]; return 1; } } return 0; } void USART_SendString(USART_TypeDef* USARTx, char* str) { while (*str) { USART_SendData(USARTx, *str++); while (USART_GetFlagStatus(USARTx, USART_FLAG_TXE) == RESET); } } ``` 在这个示例程序中,我们使用的是PA0作为DHT11的数据引脚,PA9和PA10作为串口通信口。程序通过DHT11_Read_Data函数读取DHT11的温湿度数据,并通过串口将数据输出到PC端。

stm32 dht11 串口打印函数

### 回答1: 以下是在上面提供的STM32驱动DHT11传感器的示例代码基础上,添加了通过串口打印温湿度数据的函数: ```c #include "main.h" #include "dht11.h" #include "stdio.h" #include "string.h" UART_HandleTypeDef huart2; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_USART2_UART_Init(void); void DHT11_Start(void) { // 省略 } uint8_t DHT11_Check(void) { // 省略 } uint8_t DHT11_Read_Bit(void) { // 省略 } uint8_t DHT11_Read_Byte(void) { // 省略 } uint8_t DHT11_Read_Data(uint8_t *temperature, uint8_t *humidity) { // 省略 } void UART_Printf(const char* fmt, ...) { char buf[256]; va_list args; va_start(args, fmt); vsnprintf(buf, 256, fmt, args); va_end(args); HAL_UART_Transmit(&huart2, (uint8_t*)buf, strlen(buf), HAL_MAX_DELAY); } int main(void) { uint8_t temperature, humidity; HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_USART2_UART_Init(); while (1) { if (DHT11_Read_Data(&temperature, &humidity) == 0) { UART_Printf("Temperature: %d.%d C\n", temperature / 10, temperature % 10); UART_Printf("Humidity: %d.%d %%RH\n", humidity / 10, humidity % 10); } HAL_Delay(2000); } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK) { Error_Handler(); } PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART2; PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } static void MX_USART2_UART_Init(void) { huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } } static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOA_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1, GPIO_PIN_RESET); /*Configure GPIO pin : PA1 */ GPIO_InitStruct.Pin = GPIO_PIN_1; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); } ``` 在主函数中,每隔2秒读取一次DHT11传感器的温湿度数据,并通过串口打印出来。其中,`UART_Printf`函数是一个格式化输出函数,用于将温湿度数据以指定格式打印到串口上。在本例中,使用了`vsprintf`函数将格式化字符串转换成实际要输出的字符串,并通过`HAL_UART_Transmit`函数将字符串发送到串口。注意,为了防止打印过程中出现数据错乱,需要在串口初始化时设置`UART_OVERSAMPLING_16`参数,以提高串口传输的可靠性。 ### 回答2: STM32是一种常用的单片机开发平台,DHT11是一种温湿度传感器,而串口打印函数则是用于将数据通过串口输出到终端或其他设备的函数。在使用STM32和DHT11传感器时,可以通过串口打印函数将温湿度数据实时输出到终端,方便开发者进行数据监测和调试。 在STM32开发环境中,可以使用HAL库提供的UART串口通信函数来实现串口打印功能。首先,需要初始化串口相关的配置,包括波特率、数据位、停止位等。然后,在需要打印的地方调用相应的函数,将数据以字符串的形式发送到串口。 对于DHT11传感器,可以通过GPIO口读取温湿度数据,然后将数据转换为字符串,并使用串口打印函数发送到终端。 下面是一个简单的示例代码: ```c #include "stm32f4xx_hal.h" #include "stdio.h" UART_HandleTypeDef huart1; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_USART1_UART_Init(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_USART1_UART_Init(); uint8_t data[50]; while (1) { // 从DHT11传感器读取温湿度数据,并将数据存储在data数组中 // 将温湿度数据转换为字符串,存储在data数组中 // 调用串口打印函数,将data数组发送到终端 HAL_UART_Transmit(&huart1, data, strlen((char*)data), HAL_MAX_DELAY); HAL_Delay(1000); // 间隔一秒钟 } } void SystemClock_Config(void) { // 系统时钟配置代码 } static void MX_USART1_UART_Init(void) { huart1.Instance = USART1; huart1.Init.BaudRate = 115200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } } static void MX_GPIO_Init(void) { // GPIO配置代码 } ``` 以上是一个简单的示例代码,实际应用中还需要根据具体的硬件电路和软件需求进行适当的修改和调整。 ### 回答3: STM32是一款32位的微控制器,而DHT11是一种常用的数字温湿度传感器。在使用STM32控制DHT11时,可以通过串口打印函数来获取传感器的温湿度数据。 首先,通过GPIO口和DHT11进行连接,然后配置串口通信。使用STM32提供的串口库函数,可以方便地向PC端发送数据。 接下来,需要编写函数来读取DHT11的温湿度数据,并将数据发送到PC端。这可以通过以下步骤来实现: 1. 初始化DHT11传感器:设置GPIO引脚为输出模式,并产生一个低电平信号,模拟启动信号。 2. 收发数据:设置GPIO引脚为输入模式,并连续读取40个位的数据。在读取数据的过程中,需要计算每个位的高电平脉冲的持续时间。 3. 解析数据:根据DHT11的通信协议,将收到的数据进行解析,得到温湿度数值,存储在相应的变量中。 4. 通过串口打印函数,把温湿度数据发送到PC端。 例如,可以使用printf函数将温湿度数据以字符串的形式打印出来,并通过串口发送到PC端。可以使用串口的发送函数,例如:UART_SendData(UARTx, data)。 在主函数中,可以通过调用以上函数来实现DHT11温湿度数据的读取和打印。可以设置定时器,定时读取数据并使用串口打印函数发送到PC端。最后,可以在PC端的串口调试助手中接收并查看打印出来的温湿度数据。 总之,STM32的DHT11串口打印函数可以实现读取DHT11温湿度数据,并使用串口将数据发送到PC端,方便用户查看和分析数据。

相关推荐

最新推荐

recommend-type

WX小程序源码小游戏类

WX小程序源码小游戏类提取方式是百度网盘分享地址
recommend-type

grpcio-1.47.2-cp310-cp310-musllinux_1_1_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。