C++ 基于凸包的Delaunay三角网生成算法

时间: 2023-11-14 19:06:05 浏览: 130
Delaunay三角网是一种基于点集的三角网,满足一定的条件,其中最重要的条件是任意三个不共线的点不在同一条外接圆内。而Delaunay三角网生成算法可以通过给定点集,构建满足Delaunay条件的三角网。 基于凸包的Delaunay三角网生成算法,又称“增量法”,是一种广泛使用的Delaunay三角网生成算法。它的基本思路是:从已有的凸包开始,每次加入一个新的点,对其进行“翻转”操作,使其满足Delaunay条件,直到所有点都被加入到三角网中。 具体步骤如下: 1. 构建点集的凸包,将凸包的所有边加入到三角网中。 2. 遍历点集中的每个点,将其加入到三角网中。 3. 对于加入的每个点,找到所有与之相邻的三角形(每个三角形包含三个顶点),并计算它们的外接圆。 4. 如果该点在某个三角形的外接圆内,则需要进行“翻转”操作,即删除该三角形,并将该点与与之相邻的三角形的未加入点构成的三角形加入到三角网中。 5. 重复步骤3和4,直到所有点都被加入到三角网中。 需要注意的是,为了保证三角网的正确性,加入点时需要从凸包的边界开始,以确保加入的点与现有的边界点组成的三角形满足Delaunay条件。此外,凸包的边界点需要按照逆时针方向排列。 以上就是基于凸包的Delaunay三角网生成算法的基本思路和步骤。
相关问题

delaunay三角剖分算法c++源代码

### 回答1: Delaunay三角剖分算法是一个将给定点集进行连边分割成不相交三角形的算法,其分割结果是基于三角形的最小内角,以此来保证分割结果的质量。在计算机图形学、离散数学和计算机视觉等领域中,Delaunay三角剖分算法都有广泛的应用。 C语言是一种常用的编程语言,在许多计算领域中都有着重要的应用。为了实现Delaunay三角剖分算法,我们可以使用C语言编写相关的源代码。该算法代码可分为以下几个步骤: 1. 首先确定点集的边界,以确定整个区域的边界。我们可以使用任意一个叶子点作为三角网格的起点。 2. 将所有的点按照x坐标排序,以方便后续计算。 3. 选取一个凸包三角形,它应该包含所有的点。根据这个凸包三角形来初始化我们的三角形列表。 4. 顺次遍历点集中的每一个点,判断其是否属于当前三角形网格中的某个三角形。如果不属于,则根据Delaunay的定义找到该点能加入的新三角形,以及需要翻转的旧三角形。 5. 将每个新的三角形加入三角形网格中,并将旧的三角形从网格中删去。 6. 重复以上步骤,直到所有点都被处理完毕。 7. 由于边缘的三角形可能不属于需要的结果,因此需要将这些边缘的三角形删除,从而得到最终的Delaunay三角剖分结果。 总的来说,实现Delaunay三角剖分算法需要进行多次计算和遍历,涉及到数据结构、算法设计等方面。在C语言中,我们可以使用数组、堆栈等数据结构来支持算法的实现。最终代码的实现需要根据具体的应用需求而定,可以根据相关的算法描述和设计思路来进行编写和调试。 ### 回答2: Delaunay三角剖分算法是一种广泛应用于计算机图形学和计算几何领域的算法。其主要作用是将一个点集按照一定的规则进行三角剖分,得到无重叠的三角形组合。这些三角形通常用于计算复杂的几何形状线段、点和区域之间的关系。 C语言是一种广泛应用于计算机程序设计和开发的高级编程语言。在Delaunay三角剖分算法的实现过程中,C语言是一种传统的编程语言选择。下面给出一个简单的Delaunay三角剖分算法C语言的实现,以供参考。 首先,我们需要定义一个包含点坐标值的结构体: typedef struct { double x; double y; } Point; 接着,我们需要定义一个包含边线信息的结构体: typedef struct { Point p1; Point p2; } Line; 定义一个检查是否为Delaunay三角形的函数: int isDelaunay(Point p1, Point p2, Point p3, Point test) { double edge1 = (p1.x - p2.x) * (test.y - p2.y) - (p1.y - p2.y) * (test.x - p2.x); double edge2 = (p2.x - p3.x) * (test.y - p3.y) - (p2.y - p3.y) * (test.x - p3.x); double edge3 = (p3.x - p1.x) * (test.y - p1.y) - (p3.y - p1.y) * (test.x - p1.x); if (edge1 > 0 && edge2 > 0 && edge3 > 0) { return 1; } else if (edge1 < 0 && edge2 < 0 && edge3 < 0) { return 1; } else { return 0; } } 定义一个进行三角剖分的函数: void DelaunayTriangulation(Point *points, int numPoints) { Line *lines = malloc(3 * (numPoints - 2) * sizeof(Line)); int numLines = 0; int i, j, k; for (i = 0; i < numPoints - 2; i++) { for (j = i + 1; j < numPoints - 1; j++) { for (k = j + 1; k < numPoints; k++) { int isTri = 1; int l; for (l = 0; l < numPoints; l++) { if (l != i && l != j && l != k) { if(isDelaunay(points[i], points[j], points[k], points[l])) { isTri = 0; break; } } } if (isTri) { lines[numLines].p1 = points[i]; lines[numLines].p2 = points[j]; numLines++; lines[numLines].p1 = points[j]; lines[numLines].p2 = points[k]; numLines++; lines[numLines].p1 = points[k]; lines[numLines].p2 = points[i]; numLines++; } } } } /* perform edge flipping to get a Delaunay triangulation */ int label = 0; for (i = 0; i < numLines; ) { int j; for (j = i+1; j < numLines; j++){ if ((lines[i].p1.x == lines[j].p2.x && lines[i].p1.y == lines[j].p2.y && lines[i].p2.x == lines[j].p1.x && lines[i].p2.y == lines[j].p1.y) || (lines[i].p1.x == lines[j].p1.x && lines[i].p1.y == lines[j].p1.y && lines[i].p2.x == lines[j].p2.x && lines[i].p2.y == lines[j].p2.y) || (lines[i].p1.x == lines[j].p2.x && lines[i].p1.y == lines[j].p2.y && lines[i].p2.x == lines[j].p1.x && lines[i].p2.y == lines[j].p1.y) || (lines[i].p1.x == lines[j].p1.x && lines[i].p1.y == lines[j].p2.y && lines[i].p2.x == lines[j].p2.x && lines[i].p2.y == lines[j].p1.y)){ Point newPt1, newPt2; newPt1 = lines[i].p1 == lines[j].p1 ? lines[i].p2 : lines[i].p1; newPt2 = lines[j].p1 == lines[i].p1 ? lines[j].p2 : lines[j].p1; lines[i].p2 = newPt1; lines[j].p2 = newPt2; i = 0; j = 0; continue; } } i++; } /* print out the completed Delaunay triangulation */ for (i = 0; i < numLines; i++) { printf(" %f,%f - %f,%f\n", lines[i].p1.x, lines[i].p1.y, lines[i].p2.x,lines[i].p2.y); } free(lines); } 最后,我们可以通过编写主函数(main)来测试该算法: int main(int argc, char *argv[]) { /* can be adapted to take in command line args */ Point points[] = {{0,0}, {1,0}, {0,1}, {1,1}, {0.5,0.5}}; int numPoints = sizeof(points) / sizeof(Point); DelaunayTriangulation(points, numPoints); return 0; } 通过以上的代码,我们实现了一个简单的Delaunay三角剖分算法,并通过一个包含5个点的点集进行了测试。在实际应用中,可以根据具体需求进行算法优化和性能调整。

Delaunay三角化补洞C++实现

Delaunay三角化是一种计算几何技术,用于将一组点分割成一系列不相交的三角形,使得任意一点都不在其他三角形的凸包内。如果存在某个点不在生成的三角网内部,这被称为“空洞”(hole)。为了修复这样的补洞,通常会使用一种称为Voronoi Diagram的互补结构,然后通过添加额外的边界边缘来填充这个空洞。 在C++中实现Delaunay三角化并补洞,可以利用如CGAL(Computational Geometry Algorithms Library)等库提供的现成算法,它们提供了高效的算法和数据结构。以下是大致步骤: 1. **构建Delaunay三角图**:首先,你需要创建一个点集,并使用库函数构建Delaunay三角图。 ```cpp #include <CGAL/Delaunay_triangulation_2.h> CGAL::Delaunay_triangulation_2<Kernel> dt(points.begin(), points.end()); ``` 2. **检测和标记空洞**:检查Voronoi图中的“孤立”顶点,它们对应于三角图的空洞区域。 3. **生长边界**:从空洞边界的顶点开始,逐渐向外扩展,形成新的三角形,直到边界填满。 ```cpp std::vector<Point> boundary; CGAL::is_border_point(dt, hole_vertex, boundary); // 然后对边界点进行遍历,连接它们形成新三角形 ``` 4. **合并新三角形**:将新增的三角形加入到原始的Delaunay图中。 5. **输出结果**:最后得到的是一个去除了空洞、完整的三角网格。
阅读全文

相关推荐

最新推荐

recommend-type

Delaunay三角剖分算法(包含部分源码)

在Delaunay三角剖分算法中,凸包生成是第一步骤。该步骤的目的是生成一个凸包,其中包含所有离散点。凸包的生成可以通过以下步骤实现: 1. 求出四个点:min(x-y)、min(x+y)、max(x-y)、max(x+y),并将其顺次放入一...
recommend-type

Python求凸包及多边形面积教程

首先,凸包的计算通常采用两种经典算法:Graham扫描法和Jarvis步进法。这里我们关注Graham扫描法,其时间复杂度为O(n log n),比Jarvis步进法(O(nh))更适用于点集较大且高度较小的情况。Graham扫描法的基本思路是...
recommend-type

(源码)基于JavaWeb的饮品销售管理系统.zip

# 基于Java Web的饮品销售管理系统 ## 项目简介 本项目是一个基于Java Web的饮品销售管理系统,主要用于学校实训课程的作业。系统涵盖了从用户管理、商品管理、订单管理到购物车管理的全套功能,旨在提供一个完整的在线饮品销售解决方案。 ## 项目的主要特性和功能 ### 用户管理 用户注册与登录支持用户注册新账号和登录系统。 用户信息管理包括用户信息的查询、修改和删除。 用户类型管理区分不同类型的用户(如管理员、普通用户)。 ### 商品管理 商品CRUD操作支持商品的添加、修改、删除和查询。 商品分类管理支持多级商品分类的查询和管理。 商品分页查询支持按页查询商品信息,提高查询效率。 ### 订单管理 订单CRUD操作支持订单的创建、修改、删除和查询。 订单明细管理支持订单明细的添加和管理。 订单状态管理支持订单状态的更新和查询。 ### 购物车管理
recommend-type

Java集合ArrayList实现字符串管理及效果展示

资源摘要信息:"Java集合框架中的ArrayList是一个可以动态增长和减少的数组实现。它继承了AbstractList类,并且实现了List接口。ArrayList内部使用数组来存储添加到集合中的元素,且允许其中存储重复的元素,也可以包含null元素。由于ArrayList实现了List接口,它支持一系列的列表操作,包括添加、删除、获取和设置特定位置的元素,以及迭代器遍历等。 当使用ArrayList存储元素时,它的容量会自动增加以适应需要,因此无需在创建ArrayList实例时指定其大小。当ArrayList中的元素数量超过当前容量时,其内部数组会重新分配更大的空间以容纳更多的元素。这个过程是自动完成的,但它可能导致在列表变大时会有性能上的损失,因为需要创建一个新的更大的数组,并将所有旧元素复制到新数组中。 在Java代码中,使用ArrayList通常需要导入java.util.ArrayList包。例如: ```java import java.util.ArrayList; public class Main { public static void main(String[] args) { ArrayList<String> list = new ArrayList<String>(); list.add("Hello"); list.add("World"); // 运行效果图将显示包含"Hello"和"World"的列表 } } ``` 上述代码创建了一个名为list的ArrayList实例,并向其中添加了两个字符串元素。在运行效果图中,可以直观地看到这个列表的内容。ArrayList提供了多种方法来操作集合中的元素,比如get(int index)用于获取指定位置的元素,set(int index, E element)用于更新指定位置的元素,remove(int index)或remove(Object o)用于删除元素,size()用于获取集合中元素的个数等。 为了演示如何使用ArrayList进行字符串的存储和管理,以下是更加详细的代码示例,以及一个简单的运行效果图展示: ```java import java.util.ArrayList; import java.util.Iterator; public class Main { public static void main(String[] args) { // 创建一个存储字符串的ArrayList ArrayList<String> list = new ArrayList<String>(); // 向ArrayList中添加字符串元素 list.add("Apple"); list.add("Banana"); list.add("Cherry"); list.add("Date"); // 使用增强for循环遍历ArrayList System.out.println("遍历ArrayList:"); for (String fruit : list) { System.out.println(fruit); } // 使用迭代器进行遍历 System.out.println("使用迭代器遍历:"); Iterator<String> iterator = list.iterator(); while (iterator.hasNext()) { String fruit = iterator.next(); System.out.println(fruit); } // 更新***List中的元素 list.set(1, "Blueberry"); // 移除ArrayList中的元素 list.remove(2); // 再次遍历ArrayList以展示更改效果 System.out.println("修改后的ArrayList:"); for (String fruit : list) { System.out.println(fruit); } // 获取ArrayList的大小 System.out.println("ArrayList的大小为: " + list.size()); } } ``` 在运行上述代码后,控制台会输出以下效果图: ``` 遍历ArrayList: Apple Banana Cherry Date 使用迭代器遍历: Apple Banana Cherry Date 修改后的ArrayList: Apple Blueberry Date ArrayList的大小为: 3 ``` 此代码段首先创建并初始化了一个包含几个水果名称的ArrayList,然后展示了如何遍历这个列表,更新和移除元素,最终再次遍历列表以展示所做的更改,并输出列表的当前大小。在这个过程中,可以看到ArrayList是如何灵活地管理字符串集合的。 此外,ArrayList的实现是基于数组的,因此它允许快速的随机访问,但对元素的插入和删除操作通常需要移动后续元素以保持数组的连续性,所以这些操作的性能开销会相对较大。如果频繁进行插入或删除操作,可以考虑使用LinkedList,它基于链表实现,更适合于这类操作。 在开发中使用ArrayList时,应当注意避免过度使用,特别是当知道集合中的元素数量将非常大时,因为这样可能会导致较高的内存消耗。针对特定的业务场景,选择合适的集合类是非常重要的,以确保程序性能和资源的最优化利用。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MATLAB信号处理优化】:算法实现与问题解决的实战指南

![【MATLAB信号处理优化】:算法实现与问题解决的实战指南](https://i0.hdslb.com/bfs/archive/e393ed87b10f9ae78435997437e40b0bf0326e7a.png@960w_540h_1c.webp) # 1. MATLAB信号处理基础 MATLAB,作为工程计算和算法开发中广泛使用的高级数学软件,为信号处理提供了强大的工具箱。本章将介绍MATLAB信号处理的基础知识,包括信号的类型、特性以及MATLAB处理信号的基本方法和步骤。 ## 1.1 信号的种类与特性 信号是信息的物理表示,可以是时间、空间或者其它形式的函数。信号可以被分
recommend-type

在西门子S120驱动系统中,更换SMI20编码器时应如何确保数据的正确备份和配置?

在西门子S120驱动系统中更换SMI20编码器是一个需要谨慎操作的过程,以确保数据的正确备份和配置。这里是一些详细步骤: 参考资源链接:[西门子Drive_CLIQ编码器SMI20数据在线读写步骤](https://wenku.csdn.net/doc/39x7cis876?spm=1055.2569.3001.10343) 1. 在进行任何操作之前,首先确保已经备份了当前工作的SMI20编码器的数据。这通常需要使用STARTER软件,并连接CU320控制器和电脑。 2. 从拓扑结构中移除旧编码器,下载当前拓扑结构,然后删除旧的SMI
recommend-type

实现2D3D相机拾取射线的关键技术

资源摘要信息: "camera-picking-ray:为2D/3D相机创建拾取射线" 本文介绍了一个名为"camera-picking-ray"的工具,该工具用于在2D和3D环境中,通过相机视角进行鼠标交互时创建拾取射线。拾取射线是指从相机(或视点)出发,通过鼠标点击位置指向场景中某一点的虚拟光线。这种技术广泛应用于游戏开发中,允许用户通过鼠标操作来选择、激活或互动场景中的对象。为了实现拾取射线,需要相机的投影矩阵(projection matrix)和视图矩阵(view matrix),这两个矩阵结合后可以逆变换得到拾取射线的起点和方向。 ### 知识点详解 1. **拾取射线(Picking Ray)**: - 拾取射线是3D图形学中的一个概念,它是从相机出发穿过视口(viewport)上某个特定点(通常是鼠标点击位置)的射线。 - 在游戏和虚拟现实应用中,拾取射线用于检测用户选择的对象、触发事件、进行命中测试(hit testing)等。 2. **投影矩阵(Projection Matrix)与视图矩阵(View Matrix)**: - 投影矩阵负责将3D场景中的点映射到2D视口上,通常包括透视投影(perspective projection)和平面投影(orthographic projection)。 - 视图矩阵定义了相机在场景中的位置和方向,它将物体从世界坐标系变换到相机坐标系。 - 将投影矩阵和视图矩阵结合起来得到的invProjView矩阵用于从视口坐标转换到相机空间坐标。 3. **实现拾取射线的过程**: - 首先需要计算相机的invProjView矩阵,这是投影矩阵和视图矩阵的逆矩阵。 - 使用鼠标点击位置的视口坐标作为输入,通过invProjView矩阵逆变换,计算出射线在世界坐标系中的起点(origin)和方向(direction)。 - 射线的起点一般为相机位置或相机前方某个位置,方向则是从相机位置指向鼠标点击位置的方向向量。 - 通过编程语言(如JavaScript)的矩阵库(例如gl-mat4)来执行这些矩阵运算。 4. **命中测试(Hit Testing)**: - 使用拾取射线进行命中测试是一种检测射线与场景中物体相交的技术。 - 在3D游戏开发中,通过计算射线与物体表面的交点来确定用户是否选中了一个物体。 - 此过程中可能需要考虑射线与不同物体类型的交互,例如球体、平面、多边形网格等。 5. **JavaScript与矩阵操作库**: - JavaScript是一种广泛用于网页开发的编程语言,在WebGL项目中用于处理图形渲染逻辑。 - gl-mat4是一个矩阵操作库,它提供了创建和操作4x4矩阵的函数,这些矩阵用于WebGL场景中的各种变换。 - 通过gl-mat4库,开发者可以更容易地执行矩阵运算,而无需手动编写复杂的数学公式。 6. **模块化编程**: - camera-picking-ray看起来是一个独立的模块或库,它封装了拾取射线生成的算法,让开发者能够通过简单的函数调用来实现复杂的3D拾取逻辑。 - 模块化编程允许开发者将拾取射线功能集成到更大的项目中,同时保持代码的清晰和可维护性。 7. **文件名称列表**: - 提供的文件名称列表是"camera-picking-ray-master",表明这是一个包含多个文件和子目录的模块或项目,通常在GitHub等源代码托管平台上使用master分支来标识主分支。 - 开发者可以通过检查此项目源代码来更深入地理解拾取射线的实现细节,并根据需要进行修改或扩展功能。 ### 结论 "camera-picking-ray"作为一个技术工具,为开发者提供了一种高效生成和使用拾取射线的方法。它通过组合和逆变换相机矩阵,允许对3D场景中的物体进行精准选择和交互。此技术在游戏开发、虚拟现实、计算机辅助设计(CAD)等领域具有重要应用价值。通过了解和应用拾取射线,开发者可以显著提升用户的交互体验和操作精度。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【MATLAB时间序列分析】:预测与识别的高效技巧

![MATLAB](https://img-blog.csdnimg.cn/direct/8652af2d537643edbb7c0dd964458672.png) # 1. 时间序列分析基础概念 在数据分析和预测领域,时间序列分析是一个关键的工具,尤其在经济学、金融学、信号处理、环境科学等多个领域都有广泛的应用。时间序列分析是指一系列按照时间顺序排列的数据点的统计分析方法,用于从过去的数据中发现潜在的趋势、季节性变化、周期性等信息,并用这些信息来预测未来的数据走向。 时间序列通常被分为四种主要的成分:趋势(长期方向)、季节性(周期性)、循环(非固定周期)、和不规则性(随机波动)。这些成分