用matlab编写粒子群优化的神经网络代码
时间: 2023-07-24 15:04:19 浏览: 79
以下是一个简单的使用粒子群优化算法优化神经网络的 MATLAB 代码示例:
```matlab
% 加载数据
load iris_dataset.mat;
inputs = irisInputs;
targets = irisTargets;
% 定义神经网络架构
input_layer_size = size(inputs, 1);
hidden_layer_size = 10;
output_layer_size = size(targets, 1);
% 定义粒子群算法参数
num_particles = 30;
max_iterations = 100;
c1 = 1.5;
c2 = 2.0;
w = 0.7;
% 初始化粒子位置和速度
particles_position = 0.5*rand(hidden_layer_size*(input_layer_size+1) + output_layer_size*(hidden_layer_size+1), num_particles);
particles_velocity = rand(size(particles_position));
% 初始化全局最优位置和适应度
global_best_position = particles_position(:,1);
global_best_fitness = Inf;
% 训练神经网络
for i = 1:max_iterations
% 更新粒子速度和位置
particles_velocity = w*particles_velocity ...
+ c1*rand(size(particles_position)).*(particles_best_position - particles_position) ...
+ c2*rand(size(particles_position)).*(repmat(global_best_position,1,num_particles) - particles_position);
particles_position = particles_position + particles_velocity;
% 限制粒子位置在合理范围内
particles_position(particles_position > 1) = 1;
particles_position(particles_position < -1) = -1;
% 计算粒子适应度
for j = 1:num_particles
% 将粒子位置转化为神经网络权值
input_weights = reshape(particles_position(1:hidden_layer_size*(input_layer_size+1), j), hidden_layer_size, input_layer_size+1);
output_weights = reshape(particles_position(hidden_layer_size*(input_layer_size+1)+1:end, j), output_layer_size, hidden_layer_size+1);
% 使用当前权值进行神经网络预测
net = feedforwardnet(hidden_layer_size);
net.trainFcn = 'traingd';
net.trainParam.epochs = 1;
net.trainParam.lr = 0.1;
net.trainParam.goal = 0.001;
net = configure(net, inputs, targets);
net.IW{1,1} = input_weights(:,1:end-1);
net.LW{2,1} = output_weights(:,1:end-1);
net.b{1} = input_weights(:,end);
net.b{2} = output_weights(:,end);
net = train(net, inputs, targets);
fitness = perform(net, targets, net(inputs));
% 更新粒子个体最优位置和适应度
if fitness < particles_best_fitness(j)
particles_best_position(:,j) = particles_position(:,j);
particles_best_fitness(j) = fitness;
end
% 更新全局最优位置和适应度
if fitness < global_best_fitness
global_best_position = particles_position(:,j);
global_best_fitness = fitness;
end
end
% 打印当前迭代结果
fprintf('Iteration %d: Best Fitness = %f\n', i, global_best_fitness);
end
% 输出最优神经网络权值
input_weights = reshape(global_best_position(1:hidden_layer_size*(input_layer_size+1)), hidden_layer_size, input_layer_size+1);
output_weights = reshape(global_best_position(hidden_layer_size*(input_layer_size+1)+1:end), output_layer_size, hidden_layer_size+1);
disp('Input Weights:');
disp(input_weights);
disp('Output Weights:');
disp(output_weights);
```
在上述代码中,我们首先加载了 iris 数据集,然后定义了一个具有 10 个隐藏层神经元的神经网络。接着,我们初始化了粒子群算法的参数,并使用随机值初始化了粒子位置和速度。然后,我们开始迭代训练神经网络直到达到最大迭代次数。在每次迭代中,我们更新每个粒子的速度和位置,并计算粒子的适应度。最后,我们输出全局最优权值。
需要注意的是,上述代码仅仅是一个简单的示例,真实的情况下,你需要根据实际问题对代码进行修改和优化。
阅读全文