代码实现卷积神经网络实现VAE模型中用残差网络缓解梯度消失问题
时间: 2023-05-28 19:08:14 浏览: 180
以下是一个使用残差网络缓解梯度消失问题的VAE模型的代码实现,该模型使用PyTorch实现:
```python
import torch
import torch.nn as nn
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class VAE(nn.Module):
def __init__(self, in_channels=3, latent_dim=256):
super(VAE, self).__init__()
self.latent_dim = latent_dim
self.encoder = nn.Sequential(
nn.Conv2d(in_channels, 32, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
ResidualBlock(64, 128, stride=2),
ResidualBlock(128, 256, stride=2),
nn.Flatten(),
nn.Linear(4 * 4 * 256, latent_dim * 2)
)
self.decoder = nn.Sequential(
nn.Linear(latent_dim, 4 * 4 * 256),
nn.ReLU(inplace=True),
nn.Unflatten(-1, (256, 4, 4)),
ResidualBlock(256, 128),
ResidualBlock(128, 64),
nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(32, in_channels, kernel_size=4, stride=2, padding=1),
nn.Sigmoid()
)
def encode(self, x):
h = self.encoder(x)
mu = h[:, :self.latent_dim]
logvar = h[:, self.latent_dim:]
return mu, logvar
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
z = mu + eps * std
return z
def decode(self, z):
x = self.decoder(z)
return x
def forward(self, x):
mu, logvar = self.encode(x)
z = self.reparameterize(mu, logvar)
x_hat = self.decode(z)
return x_hat, mu, logvar
```
在以上代码中,我们定义了一个ResidualBlock类,它是残差网络的基本块。VAE模型中的编码器和解码器都使用了残差网络,以缓解梯度消失问题。
在编码器中,我们使用了两个ResidualBlock,这两个块都采用了stride=2的卷积来减小特征图的尺寸。在解码器中,我们使用了三个ResidualBlock,这些块都采用了stride=1的卷积来保持特征图的尺寸不变。我们还使用了反卷积(ConvTranspose2d)来从潜在空间中生成图像。
在训练VAE模型时,我们可以使用以下代码:
```python
vae = VAE()
optimizer = torch.optim.Adam(vae.parameters(), lr=1e-3)
def loss_function(x_hat, x, mu, logvar):
BCE = nn.functional.binary_cross_entropy(x_hat, x, reduction='sum')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return BCE + KLD
def train(epoch):
vae.train()
train_loss = 0
for batch_idx, (data, _) in enumerate(train_loader):
data = data.to(device)
optimizer.zero_grad()
x_hat, mu, logvar = vae(data)
loss = loss_function(x_hat, data, mu, logvar)
loss.backward()
train_loss += loss.item()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.item() / len(data)))
print('====> Epoch: {} Average loss: {:.4f}'.format(
epoch, train_loss / len(train_loader.dataset)))
for epoch in range(1, 21):
train(epoch)
```
在以上代码中,我们首先定义了一个损失函数loss_function,该函数计算了重构误差和KL散度的和。然后我们定义了一个训练函数train,该函数用于训练VAE模型。在训练过程中,我们使用Adam优化器来更新模型参数。在每个epoch结束时,我们打印出平均损失。最后,我们训练模型20个epoch。
阅读全文