batch normalization代码 1DCNN网络
时间: 2023-05-20 16:01:39 浏览: 254
以下是一个使用 Batch Normalization 的 1D CNN 网络的代码示例:
```python
import torch
import torch.nn as nn
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv1d(1, 10, kernel_size=5)
self.bn1 = nn.BatchNorm1d(10)
self.pool1 = nn.MaxPool1d(kernel_size=2)
self.conv2 = nn.Conv1d(10, 20, kernel_size=5)
self.bn2 = nn.BatchNorm1d(20)
self.pool2 = nn.MaxPool1d(kernel_size=2)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = self.pool1(torch.relu(self.bn1(self.conv1(x))))
x = self.pool2(torch.relu(self.bn2(self.conv2(x))))
x = x.view(-1, 320)
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
```
这个网络包括两个卷积层和两个池化层,其中每个卷积层后面都跟着一个 Batch Normalization 层。在训练过程中,Batch Normalization 层将对每个 mini-batch 的数据进行归一化,从而加速训练过程并提高模型的准确性。
阅读全文