nlogn 的时间复杂度是怎么得来的

时间: 2024-04-25 21:26:04 浏览: 196
通常情况下,我们说一个算法的时间复杂度是 $O(nlogn)$,是因为该算法的时间复杂度能够达到 $O(nlogn)$ 的上限。这个上限是从算法的基本操作的次数来推导的。 我们以归并排序为例,来解释 $O(nlogn)$ 时间复杂度的计算。归并排序是一种分治算法,其时间复杂度可以分为两个部分: 1. 分解:将待排序的 $n$ 个元素分成各含 $n/2$ 个元素的子序列,这个过程的时间复杂度是 $O(n)$。 2. 合并:对这些子序列进行两两合并,得到 $n/2$ 个子序列,每个子序列含有 $2$ 个元素,对这些子序列再进行两两合并,直到得到一个长度为 $n$ 的有序序列。这个过程的时间复杂度是 $O(nlogn)$。 因此,归并排序的时间复杂度为 $O(nlogn)$。 具体来说,由于每次合并操作需要比较两个子序列的元素,因此每次合并的时间复杂度为 $O(n)$,而总的合并次数为 $logn$,因此总的时间复杂度为 $O(nlogn)$。 需要注意的是,$O(nlogn)$ 是归并排序的最优时间复杂度,但在实际应用中,该时间复杂度并不是所有情况下都能达到。例如,当待排序的数组已经有序时,归并排序的时间复杂度就会退化为 $O(n)$,而不是 $O(nlogn)$。
相关问题

归并排序时间复杂度计算

归并排序的时间复杂度可以通过递归地计算子问题的时间复杂度来得到。根据引用中的公式,归并排序的时间复杂度可以表示为: T(n) = 2*T(n/2) + C 其中,n代表问题的规模,T(n)表示规模为n的问题的时间复杂度,C表示常数项。 通过递归展开,我们可以得到以下等式: T(n) = 2*T(n/2) + C = 2*(2*T(n/4) + C) + C = 4*T(n/4) + 2*C = 4*(2*T(n/8) + C) + 2*C = 8*T(n/8) + 3*C = ... = 2^k * T(n/2^k) + k*C 其中,k代表递归的层数。 当子问题的规模变为1时,即n/2^k=1,解得k=logn。 将k=logn代入上式中,得到: T(n) = 2^logn * T(1) + logn*C = n * T(1) + logn*C 因为T(1)是常数,所以可以写成: T(n) = O(n) + O(logn) = O(nlogn) 所以,归并排序的时间复杂度为O(nlogn)。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [归并排序算法的时间复杂度](https://blog.csdn.net/crookshanks_/article/details/95355840)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [根号n段归并排序算法](https://download.csdn.net/download/weixin_43306183/13057214)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

怎么计算快排的时间复杂度和空间复杂度

### 回答1: 快速排序(QuickSort)是一种分治算法,由 Tony Hoare 在 1960 年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。 在平均情况下,每次排序后,数列的长度就会减半。因此,快速排序的时间复杂度可以表示为 O(nlogn)。在最坏的情况下,快速排序的时间复杂度为 O(n^2),这种情况出现在每次排序后数列的长度都没有减半的情况下。 快速排序的空间复杂度为 O(logn),因为它需要用递归的方式进行排序,需要使用递归栈。 总的来说,快速排序是一种非常快速的排序算法,在平均情况下具有较好的时间复杂度,但是在最坏情况下其时间复杂度较差。 ### 回答2: 快速排序的时间复杂度可以通过递归树来计算。在最好情况下,每次划分都将数组分成两个大小近似相同的子数组,这样递归树的高度为log(n),其中n是数组的长度。并且,在每一层递归中,都需要耗费O(n)的时间来进行划分操作。因此,最好情况下的时间复杂度为O(n*log(n))。 在最坏情况下,每次划分都将数组分为一个较小的子数组和一个较大的子数组,此时递归树的高度为n。并且,在每一层递归中,都需要耗费O(n)的时间来进行划分操作。因此,最坏情况下的时间复杂度为O(n^2)。 在平均情况下,假设划分过程能够均匀分配元素,那么递归树的平均高度为log(n),每一层递归的划分操作耗费O(n)的时间。因此,平均情况下的时间复杂度为O(n*log(n))。 快速排序的空间复杂度取决于递归调用栈的深度。在最好情况下,递归调用栈的深度为log(n),因此空间复杂度为O(log(n))。在最坏情况下,递归调用栈的深度为n,空间复杂度为O(n)。平均情况下,递归调用栈的深度为log(n),空间复杂度为O(log(n))。 需要注意的是,快速排序是一种原地排序算法,即不需要额外的存储空间。但是在递归调用过程中,会使用到递归栈的空间。 ### 回答3: 快速排序(Quicksort)是一种常用的排序算法。它的时间复杂度和空间复杂度如下所述。 时间复杂度: 在最理想的情况下,快排的时间复杂度为 O(nlogn),其中 n 表示待排序序列的长度。这是因为每次划分都将序列划分为两个规模均匀的子序列,并且划分的过程只需要遍历一次序列。因此,递推公式为 T(n) = 2T(n/2) + O(n),根据主定理可以得到 T(n) = O(nlogn)。 在最坏的情况下,快排的时间复杂度为 O(n^2)。最坏情况发生在每次划分都只能将序列划分为一个元素和 n-1 个元素的两个子序列的情况下。递推公式为 T(n) = T(n-1) + O(n),解得 T(n) = O(n^2)。 平均情况下,快排的时间复杂度也是 O(nlogn)。这是因为平均情况下可以假设每次划分都能将序列划分为大小相等的两个子序列,递推公式为 T(n) = 2T(n/2) + O(n),根据主定理可以得到 T(n) = O(nlogn)。 空间复杂度: 快排的空间复杂度为 O(logn)。空间复杂度的主要来源是递归过程中的栈空间。每次划分都会生成两个子序列,所以递归调用的层数为 logn,每层需要 O(1) 的额外空间用于存储划分点,因此总的空间复杂度为 O(logn)。 综上所述,快排的时间复杂度为 O(nlogn),空间复杂度为 O(logn)。快排是一种高效的排序算法,适用于大规模数据的排序。
阅读全文

相关推荐

最新推荐

recommend-type

快速傅立叶变换(FFT)

FFT算法的出现,使得这一问题得到了解决,它将DFT的计算复杂度降低到了O(NlogN),从而为实时信号处理提供了可能。 FFT的数学定义中包含了正变换和逆变换两个基本概念,分别对应将时域信号转化为频域信号,以及将...
recommend-type

基于springboot的酒店管理系统源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

蓄电池与超级电容混合储能并网matlab simulink仿真模型 (1)混合储能采用低通滤波器进行功率分配,可有效抑制功率波动,并对超级电容的soc进行能量管理,soc较高时多放电,较低时少放电

蓄电池与超级电容混合储能并网matlab simulink仿真模型。 (1)混合储能采用低通滤波器进行功率分配,可有效抑制功率波动,并对超级电容的soc进行能量管理,soc较高时多放电,较低时少放电,soc较低时状态与其相反。 (2)蓄电池和超级电容分别采用单环恒流控制,研究了基于超级电容的SOC分区限值管理策略,分为放电下限区,放电警戒区,正常工作区,充电警戒区,充电上限区。 (3)采用三相逆变并网,将直流侧800v电压逆变成交流311v并网,逆变采用电压电流双闭环pi控制,pwm调制。 附有参考资料。
recommend-type

017 - 搞笑一句话台词.docx

017 - 搞笑一句话台词
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依