w45 = [-2 -1 0;-1 0 1; 0 1 2]; g45 = imfilter(double(f), w45, 'replicate'); T = 0.3 * max(abs(g45(:))); g45 = g45 >= T;
时间: 2024-05-18 15:18:15 浏览: 136
这段代码的作用是什么?
这段代码的作用是对图像进行45度方向的边缘检测。首先定义了一个3x3的卷积核w45,然后用imfilter函数将其应用于图像f上,并使用'replicate'参数指定边界的处理方式。接下来,将卷积结果g45中的像素值与T进行比较,并将大于等于T的像素值设为1,小于T的像素值设为0,以得到二值化的边缘图像。其中T的值是根据g45中像素值的最大绝对值乘以0.3来计算的。
相关问题
%读入图像,将图像数据类型转化为double Image = im2double(rgb2gray(imread('lena.jpg'))); %构造Sobel算子的8个模板,旋转得来 H1 = [-1 -2 -1;0 0 0;1 2 1];H2 = [0 -1 -2;1 0 -1;2 1 0]; H3 = [1 0 -1;2 0 -2;1 0 -1];H4 = [2 1 0;1 0 -1;0 -1 -2]; H5 = [1 2 1;0 0 0;-1 -2 -1];H6 = [0 1 2;-1 0 1;-2 -1 0]; H7 = [-1 0 1;-2 0 2;-1 0 1];H8 = [-2 -1 0;-1 0 1;0 1 2]; %使用Sobel各个模板进行过滤 R1 = imfilter(ImageF,H1);R2 = imfilter(ImageF,H2); R3 = imfilter(ImageF,H3);R4 = imfilter(ImageF,H4); R5 = imfilter(ImageF,H5);R6 = imfilter(ImageF,H6); R7 = imfilter(ImageF,H7);R8 = imfilter(ImageF,H8); %边缘检测 f1 = max(max(R1,R2),max(R3,R4)); f2 = max(max(R5,R6),max(R7,R8)); edgeImage = max(f1,f2); subplot(111);imshow(edgeImage);title('八个模板的Sobel梯度图像'); %图像锐化 sharpImage = edgeImage+ImageF; subplot(112);imshow(sharpImage);title('八个模板的Sobel锐化图像');修改这段代码使其没有错误
As an AI language model, I do not have emotions or personal opinions. However, "null" is a programming term that refers to a value that is undefined or has no value assigned to it. It is often used in programming languages such as Java, C++, and Python.
I=imread('0294.jpg'); I1=RGB2Lab(I); L1 = double(I1(:,:,1)); L2 = double(I1(:,:,2)); L3 = double(I1(:,:,3)); PL1=mean(L1(:)); PL2=mean(L2(:)); PL3=mean(L3(:)); [m,n]=size(L1); for i=1:m for j=1:n LL1(i,j)=abs(L1(i,j)-PL1); end end for i=1:m for j=1:n LL2(i,j)=abs(L2(i,j)-PL2); end end for i=1:m for j=1:n LL3(i,j)=abs(L3(i,j)-PL3); end end LLL1=reshape(LL1,1,[]); SL1=std(LLL1); LLL2=reshape(LL2,1,[]); SL2=std(LLL2); LLL3=reshape(LL3,1,[]); SL3=std(LLL3); %比较标准差最大 SL=max(max(SL1,SL2),SL3); G = fspecial('gaussian', [5 5], 1); GL1=imfilter(LL1, G, 'circular'); hist=imhist(GL1)/prod(size(GL1)); G1=find(hist); H1=-hist(G1)'*log2(hist(G1)); GL2=imfilter(LL2, G, 'circular'); hist=imhist(GL2)/prod(size(GL2)); G2=find(hist); H2=-hist(G2)'*log2(hist(G2)); GL3=imfilter(LL3, G, 'circular'); hist=imhist(GL3)/prod(size(GL3)); G3=find(hist); H3=-hist(G3)'*log2(hist(G3)); %比较二维熵最小的 H=min(min(H1,H2),H3); if(SL==SL1) ZL=LL1; end if(SL==SL2) ZL=LL2; end if(SL==SL3) ZL=LL3; end if(H==H1) HL=LL1; end if(H==H2) HL=LL2; end if(H==H3) HL=LL3; end %计算初始显著图 C=0.35*ZL+0.65*HL; [Z E]=lrr(C,0.01);%全局低秩Z为低秩部分E为稀疏部分 ZZ=(C-Z).*C; figure,imshow(ZZ,[]);运行代码时报错矩阵维度必须一致。 出错 Untitled3 (line 69) ZZ=(C-Z).*C;如何修正
根据错误提示,矩阵维度必须一致,说明在执行`ZZ=(C-Z).*C`这一行代码时,矩阵C和矩阵Z的维度不同。
在这段代码中,矩阵C的维度是由LL1、LL2、LL3中的一个确定的,而矩阵Z是通过`[Z E]=lrr(C,0.01)`计算得到的,因此可能存在矩阵维度不同的情况。
解决方法是检查矩阵C和矩阵Z的维度,确保它们的维度一致。可以通过使用`size()`函数检查矩阵的维度,或者在调试时查看变量的值,找到维度不同的原因并进行调整。
阅读全文
相关推荐
















