java 识别图像是否是同一个人,贴代码
时间: 2023-12-14 07:38:50 浏览: 79
qicheshibian.rar_license plate_qicheshibian_图像处理_图像识别
Java 识别图像是否是同一个人,通常需要使用人脸识别技术。以下是使用 Java 实现的简单示例代码:
```java
import java.awt.Graphics;
import java.awt.Image;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
import org.bytedeco.javacpp.Loader;
import org.bytedeco.opencv.global.opencv_core;
import org.bytedeco.opencv.opencv_core.IplImage;
import org.bytedeco.opencv.opencv_core.Mat;
import org.bytedeco.opencv.opencv_face.FaceRecognizer;
import org.bytedeco.opencv.opencv_face.LBPHFaceRecognizer;
import org.bytedeco.opencv.opencv_imgcodecs;
public class FaceRecognition {
public static void main(String[] args) throws IOException {
String path = "path/to/images";
File[] files = new File(path).listFiles();
BufferedImage[] images = new BufferedImage[files.length];
for (int i = 0; i < files.length; i++) {
images[i] = ImageIO.read(files[i]);
}
FaceRecognizer recognizer = LBPHFaceRecognizer.create();
Mat[] mats = new Mat[images.length];
for (int i = 0; i < images.length; i++) {
mats[i] = toMat(images[i]);
recognizer.update(mats[i], i);
}
int[] labels = new int[images.length];
for (int i = 0; i < labels.length; i++) {
labels[i] = i;
}
recognizer.train(mats, labels);
Mat testMat = toMat(ImageIO.read(new File("path/to/test/image")));
int[] predictedLabel = new int[1];
double[] predictedConfidence = new double[1];
recognizer.predict(testMat, predictedLabel, predictedConfidence);
if (predictedConfidence[0] < 100) {
System.out.println("Test image is recognized as " + files[predictedLabel[0]].getName());
} else {
System.out.println("Test image is not recognized as any known person.");
}
}
private static Mat toMat(BufferedImage image) {
IplImage iplImage = Loader.bufferedImageToIplImage(image);
Mat mat = opencv_core.cvarrToMat(iplImage);
Mat grayMat = new Mat();
opencv_imgproc.cvtColor(mat, grayMat, opencv_imgproc.COLOR_BGR2GRAY);
return grayMat;
}
}
```
该示例使用 OpenCV 中的 LBPHFaceRecognizer 类实现人脸识别。首先,将所有训练图像读入内存,并转换为 Mat 对象。然后,使用 FaceRecognizer 的 update() 方法将每个 Mat 对象添加到训练集中。接下来,将所有训练图像的标签传递给 train() 方法进行训练。
最后,将要测试的图像读入内存,并转换为 Mat 对象。使用 FaceRecognizer 的 predict() 方法预测测试图像的标签。如果预测的置信度小于 100,则将测试图像识别为已知人物;否则,将其视为未知人物。
阅读全文