写一段CNN和LSTM并联后得到的flatten层叠加的网络,其中CNN有3次二维卷积,输入数据的batch_size是4,in_channels=1,每个通道的图像尺寸为(22,751)
时间: 2024-03-01 09:55:45 浏览: 44
好的,下面是一段CNN和LSTM并联后得到的flatten层叠加的网络代码,满足你的要求:
```
import torch
import torch.nn as nn
class CNN_LSTM_Flatten(nn.Module):
def __init__(self):
super(CNN_LSTM_Flatten, self).__init__()
# 定义CNN部分
self.cnn = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=16, kernel_size=(3, 3), padding=(1, 1)),
nn.ReLU(),
nn.Conv2d(in_channels=16, out_channels=32, kernel_size=(3, 3), padding=(1, 1)),
nn.ReLU(),
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(3, 3), padding=(1, 1)),
nn.ReLU()
)
# 定义LSTM部分
self.lstm = nn.LSTM(input_size=64 * 22, hidden_size=128, num_layers=2, batch_first=True)
# 定义flatten层
self.flatten = nn.Flatten()
# 定义全连接层
self.fc = nn.Linear(751 * 128, 10)
def forward(self, x):
# x的shape为(batch_size, in_channels, 22, 751)
batch_size = x.shape[0]
x = self.cnn(x) # 经过CNN后的shape为(batch_size, 64, 22, 751)
x = x.view(batch_size, -1, 64 * 22) # reshape成(batch_size, 751, 64 * 22)
x, _ = self.lstm(x) # 经过LSTM后的shape为(batch_size, 751, 128)
x = self.flatten(x) # flatten成(batch_size, 751 * 128)
x = self.fc(x) # 经过全连接层后的shape为(batch_size, 10)
return x
```
这段代码在`CNN_LSTM`的基础上增加了一个`flatten`层和一个全连接层`fc`。在前向传播过程中,先将输入数据经过CNN和LSTM,再经过flatten层,将(batch_size, 751, 128)的张量flatten成(batch_size, 751 * 128)的形状。最后经过全连接层得到(batch_size, 10)的张量。
阅读全文