PCL汉明距离特征点匹配代码
时间: 2023-07-10 07:12:57 浏览: 98
汉明距离matlab代码-mCREATE:创造
以下是使用PCL库进行汉明距离特征点匹配的示例代码:
```c++
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/features/fpfh.h>
#include <pcl/features/normal_3d.h>
#include <pcl/registration/correspondence_estimation.h>
#include <pcl/registration/correspondence_rejection_features.h>
#include <pcl/registration/correspondence_rejection_sample_consensus.h>
#include <pcl/registration/icp.h>
int main(int argc, char** argv)
{
// Load the point clouds
pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr target_cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile<pcl::PointXYZ>("source.pcd", *source_cloud);
pcl::io::loadPCDFile<pcl::PointXYZ>("target.pcd", *target_cloud);
// Compute surface normals and FPFH features
pcl::PointCloud<pcl::Normal>::Ptr source_normals(new pcl::PointCloud<pcl::Normal>);
pcl::PointCloud<pcl::Normal>::Ptr target_normals(new pcl::PointCloud<pcl::Normal>);
pcl::search::KdTree<pcl::PointXYZ>::Ptr search_tree(new pcl::search::KdTree<pcl::PointXYZ>);
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> normal_estimator;
normal_estimator.setInputCloud(source_cloud);
normal_estimator.setSearchMethod(search_tree);
normal_estimator.setRadiusSearch(0.03);
normal_estimator.compute(*source_normals);
normal_estimator.setInputCloud(target_cloud);
normal_estimator.compute(*target_normals);
pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> fpfh_estimator;
fpfh_estimator.setInputCloud(source_cloud);
fpfh_estimator.setInputNormals(source_normals);
fpfh_estimator.setSearchMethod(search_tree);
fpfh_estimator.setRadiusSearch(0.05);
pcl::PointCloud<pcl::FPFHSignature33>::Ptr source_features(new pcl::PointCloud<pcl::FPFHSignature33>);
pcl::PointCloud<pcl::FPFHSignature33>::Ptr target_features(new pcl::PointCloud<pcl::FPFHSignature33>);
fpfh_estimator.compute(*source_features);
fpfh_estimator.setInputCloud(target_cloud);
fpfh_estimator.setInputNormals(target_normals);
fpfh_estimator.compute(*target_features);
// Compute correspondences between the feature clouds
pcl::registration::CorrespondenceEstimation<pcl::FPFHSignature33, pcl::FPFHSignature33> correspondence_estimator;
correspondence_estimator.setInputSource(source_features);
correspondence_estimator.setInputTarget(target_features);
pcl::CorrespondencesPtr correspondences(new pcl::Correspondences);
correspondence_estimator.determineCorrespondences(*correspondences);
// Reject correspondences based on feature distance
pcl::registration::CorrespondenceRejectorFeatures<pcl::FPFHSignature33> correspondence_rejector_features;
correspondence_rejector_features.setInputSource(source_features);
correspondence_rejector_features.setInputTarget(target_features);
correspondence_rejector_features.setThreshold(0.2);
correspondence_rejector_features.getRemainingCorrespondences(*correspondences);
// Reject correspondences based on RANSAC
pcl::registration::CorrespondenceRejectorSampleConsensus<pcl::PointXYZ> correspondence_rejector_ransac;
correspondence_rejector_ransac.setInputSource(source_cloud);
correspondence_rejector_ransac.setInputTarget(target_cloud);
correspondence_rejector_ransac.setInlierThreshold(0.01);
correspondence_rejector_ransac.setMaximumIterations(10000);
correspondence_rejector_ransac.setInputCorrespondences(correspondences);
correspondence_rejector_ransac.getRemainingCorrespondences(*correspondences);
// Compute transformation matrix using ICP
pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;
icp.setInputSource(source_cloud);
icp.setInputTarget(target_cloud);
icp.setMaxCorrespondenceDistance(0.05);
icp.setMaximumIterations(100);
icp.setTransformationEpsilon(1e-8);
icp.setEuclideanFitnessEpsilon(1e-6);
icp.setInputCorrespondences(correspondences);
pcl::PointCloud<pcl::PointXYZ>::Ptr transformed_cloud(new pcl::PointCloud<pcl::PointXYZ>);
icp.align(*transformed_cloud);
// Print the transformation matrix
std::cout << "Transformation matrix:\n" << icp.getFinalTransformation() << std::endl;
return 0;
}
```
其中,source.pcd 和 target.pcd 分别是需要匹配的点云文件,0.03、0.05、0.2、0.01、0.05、100 和 1e-8、1e-6 分别是用于计算特征和匹配的参数,可以根据实际情况进行调整。
阅读全文