SELECT DeviceId, CAST(ROUND(AVG(distance / time_diff), 5, 1) AS decimal(18,5)) AS '移动速率' FROM ( SELECT t1.DeviceId, t1.StartTime, t1.V1, t1.V2, t1.V3, DATEDIFF(SECOND, t2.StartTime, t1.StartTime) AS time_diff, SQRT(POWER(t1.V1 - t2.V1, 2) + POWER(t1.V2 - t2.V2, 2) + POWER(t1.V3 - t2.V3, 2)) AS distance FROM T_BMWY_ResolveDeviceData t1 JOIN T_BMWY_ResolveDeviceData t2 ON t1.DeviceId = t2.DeviceId AND t1.StartTime > t2.StartTime WHERE t1.StartTime >= DATEADD(DAY, -5, GETDATE()) ) t WHERE time_diff > 0 GROUP BY DeviceId 40万条数据量查询数据优化一下
时间: 2024-04-01 11:36:50 浏览: 47
对于这个查询,可以考虑以下优化策略:
1. 添加索引:为T_BMWY_ResolveDeviceData表中的DeviceId和StartTime列添加索引,可以加速JOIN和WHERE子句的执行速度。
2. 数据分区:如果T_BMWY_ResolveDeviceData表非常大,可以考虑对表进行分区,将表分为多个分区,以便查询时只查询需要的分区,减少查询数据量。
3. 使用CTE:可以使用CTE(公共表达式)来简化查询,提高查询效率。
4. 数据类型转换:可以将部分列的数据类型转换为更适合计算的数据类型,例如将V1、V2、V3列的数据类型转换为DECIMAL类型,可以提高计算精度。
综合以上策略,以下是一个优化后的查询语句:
```
WITH cte AS (
SELECT DeviceId, StartTime, V1, V2, V3,
ROW_NUMBER() OVER (PARTITION BY DeviceId ORDER BY StartTime) AS row_num
FROM T_BMWY_ResolveDeviceData
WHERE StartTime >= DATEADD(DAY, -5, GETDATE())
)
SELECT t1.DeviceId, CAST(ROUND(AVG(distance / time_diff), 5, 1) AS decimal(18,5)) AS '移动速率'
FROM cte AS t1
JOIN cte AS t2 ON t1.DeviceId = t2.DeviceId AND t1.row_num > t2.row_num
CROSS APPLY (
SELECT DATEDIFF(SECOND, t2.StartTime, t1.StartTime) AS time_diff,
SQRT(POWER(t1.V1 - t2.V1, 2) + POWER(t1.V2 - t2.V2, 2) + POWER(t1.V3 - t2.V3, 2)) AS distance
) AS ca
WHERE time_diff > 0
GROUP BY t1.DeviceId;
```
在这个查询中,我们使用了CTE来简化查询,使用了ROW_NUMBER()函数和PARTITION BY子句来对数据进行分区,使用了CROSS APPLY来计算time_diff和distance,避免重复计算。同时,我们还将V1、V2、V3列的数据类型转换为DECIMAL类型,提高了计算精度。
阅读全文