给定一个整数数组,数组里可能有正数、负数和零。数组中连续 的一个或多个整数组成一个子数组,每个子数组都有一个和。假设允许交换数组中任 意两个数的位置,只允许交换一次,求最大子数组和。c
时间: 2024-03-01 11:55:49 浏览: 77
好的,这是一道经典的算法题,可以采用一定的思路和算法来解决。以下是我提供的一种解题思路:
1.首先,我们可以使用一个变量max_sum来记录当前最大子数组和,初始值为数组中的第一个元素。
2.然后,我们可以使用一个变量cur_sum来记录当前子数组的和,初始值为数组中的第一个元素。
3.接下来,我们可以使用一个循环遍历整个数组,从第二个元素开始,对于每一个元素:
- 如果cur_sum加上这个元素的值小于等于这个元素的值,那么说明当前子数组的和已经小于等于这个元素的值了,因此我们需要从这个元素开始重新计算一个子数组的和,即将cur_sum赋值为这个元素的值。
- 否则,说明当前子数组的和还可以继续增加,因此我们可以将这个元素加入到当前子数组中,即将cur_sum加上这个元素的值。
4.在每次更新cur_sum的时候,我们都可以比较一下当前的cur_sum和max_sum的大小关系,如果cur_sum大于max_sum,那么就将max_sum更新为cur_sum。
5.最后,我们可以再次遍历整个数组,尝试交换任意两个元素,然后再重新计算一遍最大子数组和,用这个值和之前的max_sum比较,取最大值即可。
具体的实现可以参考以下代码:
```c
#include <stdio.h>
int max_subarray_sum(int arr[], int n) {
int max_sum = arr[0];
int cur_sum = arr[0];
int max_index = 0;
// 找到第一个子数组的和
for (int i = 1; i < n; i++) {
if (cur_sum + arr[i] > arr[i]) {
cur_sum += arr[i];
} else {
cur_sum = arr[i];
max_index = i;
}
if (cur_sum > max_sum) {
max_sum = cur_sum;
}
}
// 尝试交换任意两个元素
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
int new_sum = max_subarray_sum(arr, n);
if (new_sum > max_sum) {
max_sum = new_sum;
}
// 恢复原数组
temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
}
return max_sum;
}
int main() {
int arr[] = {1, -2, 3, 10, -4, 7, 2, -5};
int n = sizeof(arr) / sizeof(arr[0]);
int max_sum = max_subarray_sum(arr, n);
printf("max subarray sum: %d\n", max_sum);
return 0;
}
```
希望对您有所帮助!
阅读全文