max_hold_day = 20 # 最大持股周期 min_profit_rate = 0.12 # 设置未来20天最小盈利点 loss_limit = -0.07 + 0.01 # 设置未来20天的止损点,如果我们止损点是7个点,标数据的时候超过6个点就标记为0for i in range(max_hold_day): print('begin shift %d days' % (i + 1)) tmp_df = stock_info[['ts_date_id', 'high', 'low']] tmp_df = tmp_df.rename(columns={'high': 'high_shift_{}'.format(i + 1), 'low': 'low_shift_{}'.format(i + 1)}) use_col.append('high_shift_{}'.format(i + 1)) use_col.append('low_shift_{}'.format(i + 1)) tmp_df['ts_date_id'] = tmp_df['ts_date_id'] + i + 1 stock_info = stock_info.merge(tmp_df, how='left', on='ts_date_id') # 假设以当天开盘价买入 for i in range(max_hold_day): stock_info['high_shift_{}'.format(i + 1)] = (stock_info['high_shift_{}'.format(i + 1)] - stock_info['open']) / \ stock_info['open'] stock_info['low_shift_{}'.format(i + 1)] = (stock_info['low_shift_{}'.format(i + 1)] - stock_info['open']) / \ stock_info['open'] tmp_array = stock_info[use_col].values stock_info['label_max'] = 0 stock_info['label_min'] = 0 stock_info['label_final'] = 0 for i in range(max_hold_day): # 先判断是否到止损 tmp_col = 'low_shift_' + str(i + 1) idx = stock_info[tmp_col] <= loss_limit stock_info.loc[idx, 'label_min'] = 1 # 再判断是否到最小利润点 tmp_col = 'high_shift_' + str(i + 1) idx = stock_info[tmp_col] >= min_profit_rate stock_info.loc[idx, 'label_max'] = 1 # 如果不到止损点并且 到了最小利润点, 标签为1 idx = (stock_info['label_min'] == 0) & (stock_info['label_max'] == 1) & (stock_info['label_final'] == 0) stock_info.loc[idx, 'label_final'] = 1这里为什么不直接用未来每天的最高价和最低价与止盈点止损点比较而是要先将最高价和最低价与开盘价进行变化率计算?

时间: 2024-04-28 21:21:07 浏览: 10
这段代码是针对股票数据进行的,其中涉及到了股票的买入和卖出操作。假设我们以当天开盘价买入一只股票,那么未来每一天的最高价和最低价相对于我们买入价的变化率可以反映出股票的涨跌情况。通过计算每天的变化率,我们可以得到未来20天内股票价格的变化情况。然后,我们可以将这些变化率与设定的止盈点和止损点进行比较,以确定是否需要卖出股票,从而判断标签。因此,我们需要将每天的最高价和最低价与开盘价进行变化率计算。
相关问题

已知初始值的范围为Min_pump_zcjj = 26 Max_pump_zcjj = 51 # Y坐标约束条件 Min_pump_bdljd = 26 Max_pump_bdljd = 51 # 靶点位置约束条件 Min_pump_bdwz = 0 Max_pump_bdwz = 1 # 射孔厚度约束条件 Min_pump_skhd = 1 Max_pump_skhd = 5 bounds = np.array([[Min_pump_zcjj, Max_pump_zcjj], [Min_pump_bdljd, Max_pump_bdljd],[Min_pump_bdwz, Max_pump_bdwz],[Min_pump_skhd, Max_pump_skhd]])

好的,那么您可以按照如下方式修改代码: ```python import cma import numpy as np def optimize(): # 目标函数 def objective_function(params): bd_X, bd_Y, x3, x4 = params # 这里用随机生成的值代替目标函数的输出 return np.random.random() # 设置初始值和范围 x0 = [38.5, 38.5, 0.5, 3.0] sigma0 = 0.2 Min_pump_zcjj = 26 Max_pump_zcjj = 51 Min_pump_bdljd = 26 Max_pump_bdljd = 51 Min_pump_bdwz = 0 Max_pump_bdwz = 1 Min_pump_skhd = 1 Max_pump_skhd = 5 bounds = np.array([[Min_pump_zcjj, Max_pump_zcjj], [Min_pump_bdljd, Max_pump_bdljd],[Min_pump_bdwz, Max_pump_bdwz],[Min_pump_skhd, Max_pump_skhd]]) # 运行优化算法 res = cma.fminbound(objective_function, x0, sigma0, bounds) # 输出最优值和最优解 print(f"最优解:{res[0]}") print(f"最优值:{res[1]}") if __name__ == "__main__": optimize() ``` 在这个示例代码中,我们使用了 `cma.fminbound()` 函数进行优化,其中 `objective_function` 函数是我们要优化的目标函数,输入为一组参数 `params`,输出为目标函数的值。`x0` 是优化的初始值,`sigma0` 是初始步长,`bounds` 是参数范围。最终输出最优解和最优值。请根据实际情况将 `objective_function` 函数替换为您的目标函数,然后设置相应的参数范围。

def main(): # X坐标束条件 Min_pump_zcjj = 26 Max_pump_zcjj = 51 # Y坐标约束条件 Min_pump_bdljd = 26 Max_pump_bdljd = 51 # 靶点位置约束条件 Min_pump_bdwz = 0 Max_pump_bdwz = 1 # 射孔厚度约束条件 Min_pump_skhd = 1 Max_pump_skhd = 5 bounds = np.array([[Min_pump_zcjj, Max_pump_zcjj], [Min_pump_bdljd, Max_pump_bdljd],[Min_pump_bdwz, Max_pump_bdwz],[Min_pump_skhd, Max_pump_skhd]]) # 定义你的优化时间限制,输入是一个数值,表示你想要优化的最长时间(秒) timeout = 30 x0 = np.mean(bounds, axis=1) # 初始向量 sigma0 = 1.0 # 初始标准差 es = cma.CMAEvolutionStrategy(x0, sigma0)

这段代码缺少了一些结束括号和换行符,我补充一下: ```python def main(): # X坐标束条件 Min_pump_zcjj = 26 Max_pump_zcjj = 51 # Y坐标约束条件 Min_pump_bdljd = 26 Max_pump_bdljd = 51 # 靶点位置约束条件 Min_pump_bdwz = 0 Max_pump_bdwz = 1 # 射孔厚度约束条件 Min_pump_skhd = 1 Max_pump_skhd = 5 bounds = np.array([[Min_pump_zcjj, Max_pump_zcjj], [Min_pump_bdljd, Max_pump_bdljd], [Min_pump_bdwz, Max_pump_bdwz], [Min_pump_skhd, Max_pump_skhd]]) # 定义你的优化时间限制,输入是一个数值,表示你想要优化的最长时间(秒) timeout = 30 x0 = np.mean(bounds, axis=1) # 初始向量 sigma0 = 1.0 # 初始标准差 es = cma.CMAEvolutionStrategy(x0, sigma0) ``` 在上述代码中,我们定义了四个变量`Min_pump_zcjj`、`Max_pump_zcjj`、`Min_pump_bdljd`、`Max_pump_bdljd`、`Min_pump_bdwz`、`Max_pump_bdwz`、`Min_pump_skhd`、`Max_pump_skhd`,用于表示X坐标、Y坐标、靶点位置和射孔厚度的约束条件。然后,我们使用`np.array`函数将这些约束条件合并成一个数组`bounds`,用于表示优化变量的范围。 接着,我们定义了一个变量`timeout`,用于表示优化的最长时间。最后,我们使用`np.mean`函数计算初始向量`x0`,并使用`cma.CMAEvolutionStrategy`函数创建一个优化器对象`es`。

相关推荐

最新推荐

recommend-type

如何修改mysql数据库的max_allowed_packet参数

本篇文章是对修改mysql数据库的max_allowed_packet参数进行了详细的分析介绍,需要的朋友参考下
recommend-type

mysql tmp_table_size和max_heap_table_size大小配置

也就是说,即使 `tmp_table_size` 设置得更大,如果 `max_heap_table_size` 较小,实际限制仍由 `max_heap_table_size` 决定。`max_heap_table_size` 专门用于控制用户创建的内存表(也称为Memory表)的最大大小。当...
recommend-type

mysql read_buffer_size 设置多少合适

8. `innodb_additional_mem_pool_size`:20MB过小,提升至128MB,用于InnoDB内部数据结构。 9. `join_buffer_size`:这个参数很重要,尤其涉及JOIN操作,如果未设置,应添加并设为8MB。 请注意,这些优化建议是基于...
recommend-type

如何修改Mysql中group_concat的长度限制

在mysql中,有个函数叫“group_concat”,平常使用可能发现不了问题,在处理大数据的时候,会发现内容被截取了。怎么解决这一问题呢,下面脚本之家小编给大家带来了Mysql中group_concat的长度限制问题,感兴趣的朋友...
recommend-type

优先队列(priority_queue)的C语言实现代码

4. `_priority` 定义优先级策略,可取值 `PRIORITY_MAX` 或 `PRIORITY_MIN`,分别表示最大优先级优先和最小优先级优先。 为了操作这个优先队列,我们需要实现一系列接口: 1. `priority_queue_new`:创建一个新的...
recommend-type

基于Springboot的医院信管系统

"基于Springboot的医院信管系统是一个利用现代信息技术和网络技术改进医院信息管理的创新项目。在信息化时代,传统的管理方式已经难以满足高效和便捷的需求,医院信管系统的出现正是适应了这一趋势。系统采用Java语言和B/S架构,即浏览器/服务器模式,结合MySQL作为后端数据库,旨在提升医院信息管理的效率。 项目开发过程遵循了标准的软件开发流程,包括市场调研以了解需求,需求分析以明确系统功能,概要设计和详细设计阶段用于规划系统架构和模块设计,编码则是将设计转化为实际的代码实现。系统的核心功能模块包括首页展示、个人中心、用户管理、医生管理、科室管理、挂号管理、取消挂号管理、问诊记录管理、病房管理、药房管理和管理员管理等,涵盖了医院运营的各个环节。 医院信管系统的优势主要体现在:快速的信息检索,通过输入相关信息能迅速获取结果;大量信息存储且保证安全,相较于纸质文件,系统节省空间和人力资源;此外,其在线特性使得信息更新和共享更为便捷。开发这个系统对于医院来说,不仅提高了管理效率,还降低了成本,符合现代社会对数字化转型的需求。 本文详细阐述了医院信管系统的发展背景、技术选择和开发流程,以及关键组件如Java语言和MySQL数据库的应用。最后,通过功能测试、单元测试和性能测试验证了系统的有效性,结果显示系统功能完整,性能稳定。这个基于Springboot的医院信管系统是一个实用且先进的解决方案,为医院的信息管理带来了显著的提升。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

字符串转Float性能调优:优化Python字符串转Float性能的技巧和工具

![字符串转Float性能调优:优化Python字符串转Float性能的技巧和工具](https://pic1.zhimg.com/80/v2-3fea10875a3656144a598a13c97bb84c_1440w.webp) # 1. 字符串转 Float 性能调优概述 字符串转 Float 是一个常见的操作,在数据处理和科学计算中经常遇到。然而,对于大规模数据集或性能要求较高的应用,字符串转 Float 的效率至关重要。本章概述了字符串转 Float 性能调优的必要性,并介绍了优化方法的分类。 ### 1.1 性能调优的必要性 字符串转 Float 的性能问题主要体现在以下方面
recommend-type

Error: Cannot find module 'gulp-uglify

当你遇到 "Error: Cannot find module 'gulp-uglify'" 这个错误时,它通常意味着Node.js在尝试运行一个依赖了 `gulp-uglify` 模块的Gulp任务时,找不到这个模块。`gulp-uglify` 是一个Gulp插件,用于压缩JavaScript代码以减少文件大小。 解决这个问题的步骤一般包括: 1. **检查安装**:确保你已经全局安装了Gulp(`npm install -g gulp`),然后在你的项目目录下安装 `gulp-uglify`(`npm install --save-dev gulp-uglify`)。 2. **配置
recommend-type

基于Springboot的冬奥会科普平台

"冬奥会科普平台的开发旨在利用现代信息技术,如Java编程语言和MySQL数据库,构建一个高效、安全的信息管理系统,以改善传统科普方式的不足。该平台采用B/S架构,提供包括首页、个人中心、用户管理、项目类型管理、项目管理、视频管理、论坛和系统管理等功能,以提升冬奥会科普的检索速度、信息存储能力和安全性。通过需求分析、设计、编码和测试等步骤,确保了平台的稳定性和功能性。" 在这个基于Springboot的冬奥会科普平台项目中,我们关注以下几个关键知识点: 1. **Springboot框架**: Springboot是Java开发中流行的应用框架,它简化了创建独立的、生产级别的基于Spring的应用程序。Springboot的特点在于其自动配置和起步依赖,使得开发者能快速搭建应用程序,并减少常规配置工作。 2. **B/S架构**: 浏览器/服务器模式(B/S)是一种客户端-服务器架构,用户通过浏览器访问服务器端的应用程序,降低了客户端的维护成本,提高了系统的可访问性。 3. **Java编程语言**: Java是这个项目的主要开发语言,具有跨平台性、面向对象、健壮性等特点,适合开发大型、分布式系统。 4. **MySQL数据库**: MySQL是一个开源的关系型数据库管理系统,因其高效、稳定和易于使用而广泛应用于Web应用程序,为平台提供数据存储和查询服务。 5. **需求分析**: 开发前的市场调研和需求分析是项目成功的关键,它帮助确定平台的功能需求,如用户管理、项目管理等,以便满足不同用户群体的需求。 6. **数据库设计**: 数据库设计包括概念设计、逻辑设计和物理设计,涉及表结构、字段定义、索引设计等,以支持平台的高效数据操作。 7. **模块化设计**: 平台功能模块化有助于代码组织和复用,包括首页模块、个人中心模块、管理系统模块等,每个模块负责特定的功能。 8. **软件开发流程**: 遵循传统的软件生命周期模型,包括市场调研、需求分析、概要设计、详细设计、编码、测试和维护,确保项目的质量和可维护性。 9. **功能测试、单元测试和性能测试**: 在开发过程中,通过这些测试确保平台功能的正确性、模块的独立性和系统的性能,以达到预期的用户体验。 10. **微信小程序、安卓源码**: 虽然主要描述中没有详细说明,但考虑到标签包含这些内容,可能平台还提供了移动端支持,如微信小程序和安卓应用,以便用户通过移动设备访问和交互。 这个基于Springboot的冬奥会科普平台项目结合了现代信息技术和软件工程的最佳实践,旨在通过信息化手段提高科普效率,为用户提供便捷、高效的科普信息管理服务。